# HG changeset patch # User nipkow # Date 1245858649 -7200 # Node ID d5a6096b94ade986781d0da1148b9d43ed58398e # Parent c9a1caf218c886a8097f9cbdafac87f11a844fb9 Replaced Suc_remove by Suc_eq_plus1 diff -r c9a1caf218c8 -r d5a6096b94ad src/HOL/NewNumberTheory/Cong.thy --- a/src/HOL/NewNumberTheory/Cong.thy Wed Jun 24 15:51:07 2009 +0200 +++ b/src/HOL/NewNumberTheory/Cong.thy Wed Jun 24 17:50:49 2009 +0200 @@ -60,9 +60,7 @@ lemma nat_1' [simp]: "nat 1 = 1" by simp -(* For those annoying moments where Suc reappears *) -lemma Suc_remove: "Suc n = n + 1" -by simp +(* For those annoying moments where Suc reappears, use Suc_eq_plus1 *) declare nat_1 [simp del] declare add_2_eq_Suc [simp del] diff -r c9a1caf218c8 -r d5a6096b94ad src/HOL/NewNumberTheory/Fib.thy --- a/src/HOL/NewNumberTheory/Fib.thy Wed Jun 24 15:51:07 2009 +0200 +++ b/src/HOL/NewNumberTheory/Fib.thy Wed Jun 24 17:50:49 2009 +0200 @@ -145,7 +145,7 @@ apply (subst nat_fib_reduce) apply (auto simp add: ring_simps) apply (subst (1 3 5) nat_fib_reduce) - apply (auto simp add: ring_simps Suc_remove) + apply (auto simp add: ring_simps Suc_eq_plus1) (* hmmm. Why doesn't "n + (1 + (1 + k))" simplify to "n + k + 2"? *) apply (subgoal_tac "n + (k + 2) = n + (1 + (1 + k))") apply (erule ssubst) back back @@ -220,7 +220,7 @@ apply (induct n rule: nat_fib_induct) apply auto apply (subst (2) nat_fib_reduce) - apply (auto simp add: Suc_remove) (* again, natdiff_cancel *) + apply (auto simp add: Suc_eq_plus1) (* again, natdiff_cancel *) apply (subst add_commute, auto) apply (subst nat_gcd_commute, auto simp add: ring_simps) done