# HG changeset patch # User huffman # Date 1286199957 25200 # Node ID d841744718fec1775f7f582a9077a3376ebfb0e0 # Parent 1c6dce3ef477fb929bf4303ea5f8ad138a6d7ad5 define is_ub predicate using bounded quantifier diff -r 1c6dce3ef477 -r d841744718fe src/HOLCF/Library/List_Cpo.thy --- a/src/HOLCF/Library/List_Cpo.thy Sat Oct 02 17:50:33 2010 -0700 +++ b/src/HOLCF/Library/List_Cpo.thy Mon Oct 04 06:45:57 2010 -0700 @@ -133,7 +133,7 @@ assumes B: "range B <<| xs" shows "range (\i. A i # B i) <<| x # xs" using assms -unfolding is_lub_def is_ub_def Ball_def [symmetric] +unfolding is_lub_def is_ub_def by (clarsimp, case_tac u, simp_all) instance list :: (cpo) cpo diff -r 1c6dce3ef477 -r d841744718fe src/HOLCF/Porder.thy --- a/src/HOLCF/Porder.thy Sat Oct 02 17:50:33 2010 -0700 +++ b/src/HOLCF/Porder.thy Mon Oct 04 06:45:57 2010 -0700 @@ -70,7 +70,7 @@ subsection {* Upper bounds *} definition is_ub :: "'a set \ 'a \ bool" (infixl "<|" 55) where - "S <| x \ (\y. y \ S \ y \ x)" + "S <| x \ (\y\S. y \ x)" lemma is_ubI: "(\x. x \ S \ x \ u) \ S <| u" by (simp add: is_ub_def)