# HG changeset patch # User immler # Date 1430844310 -7200 # Node ID d87c8c2d49382c132af830b226b1fe3eb89f9f50 # Parent f620c70f9e9b2be862e30b5f424d4faa4b04d07d generalized class constraints diff -r f620c70f9e9b -r d87c8c2d4938 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Tue May 05 18:45:10 2015 +0200 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Tue May 05 18:45:10 2015 +0200 @@ -1115,7 +1115,7 @@ text {* In particular. *} lemma has_derivative_zero_constant: - fixes f :: "'a::real_normed_vector \ 'b::real_inner" + fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex s" and "\x. x \ s \ (f has_derivative (\h. 0)) (at x within s)" shows "\c. \x\s. f x = c" @@ -1130,7 +1130,7 @@ qed lemma has_derivative_zero_unique: - fixes f :: "'a::real_normed_vector \ 'b::real_inner" + fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex s" and "\x. x \ s \ (f has_derivative (\h. 0)) (at x within s)" and "x \ s" "y \ s" @@ -1138,7 +1138,7 @@ using has_derivative_zero_constant[OF assms(1,2)] assms(3-) by force lemma has_derivative_zero_unique_connected: - fixes f :: "'a::real_normed_vector \ 'b::real_inner" + fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" assumes "open s" "connected s" assumes f: "\x. x \ s \ (f has_derivative (\x. 0)) (at x)" assumes "x \ s" "y \ s" @@ -1831,7 +1831,7 @@ subsection {* Uniformly convergent sequence of derivatives *} lemma has_derivative_sequence_lipschitz_lemma: - fixes f :: "nat \ 'a::real_normed_vector \ 'b::real_inner" + fixes f :: "nat \ 'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex s" and "\n. \x\s. ((f n) has_derivative (f' n x)) (at x within s)" and "\n\N. \x\s. \h. norm (f' n x h - g' x h) \ e * norm h" @@ -1866,7 +1866,7 @@ qed lemma has_derivative_sequence_lipschitz: - fixes f :: "nat \ 'a::real_normed_vector \ 'b::real_inner" + fixes f :: "nat \ 'a::real_normed_vector \ 'b::real_normed_vector" assumes "convex s" and "\n. \x\s. ((f n) has_derivative (f' n x)) (at x within s)" and "\e>0. \N. \n\N. \x\s. \h. norm (f' n x h - g' x h) \ e * norm h" @@ -1886,7 +1886,7 @@ qed lemma has_derivative_sequence: - fixes f :: "nat \ 'a::real_normed_vector \ 'b::{real_inner, complete_space}" + fixes f :: "nat \ 'a::real_normed_vector \ 'b::banach" assumes "convex s" and "\n. \x\s. ((f n) has_derivative (f' n x)) (at x within s)" and "\e>0. \N. \n\N. \x\s. \h. norm (f' n x h - g' x h) \ e * norm h" @@ -2090,7 +2090,7 @@ text {* Can choose to line up antiderivatives if we want. *} lemma has_antiderivative_sequence: - fixes f :: "nat \ 'a::real_normed_vector \ 'b::{real_inner, complete_space}" + fixes f :: "nat \ 'a::real_normed_vector \ 'b::banach" assumes "convex s" and "\n. \x\s. ((f n) has_derivative (f' n x)) (at x within s)" and "\e>0. \N. \n\N. \x\s. \h. norm (f' n x h - g' x h) \ e * norm h" @@ -2111,7 +2111,7 @@ qed auto lemma has_antiderivative_limit: - fixes g' :: "'a::real_normed_vector \ 'a \ 'b::{real_inner, complete_space}" + fixes g' :: "'a::real_normed_vector \ 'a \ 'b::banach" assumes "convex s" and "\e>0. \f f'. \x\s. (f has_derivative (f' x)) (at x within s) \ (\h. norm (f' x h - g' x h) \ e * norm h)" @@ -2163,7 +2163,7 @@ subsection {* Differentiation of a series *} lemma has_derivative_series: - fixes f :: "nat \ 'a::real_normed_vector \ 'b::{real_inner, complete_space}" + fixes f :: "nat \ 'a::real_normed_vector \ 'b::banach" assumes "convex s" and "\n x. x \ s \ ((f n) has_derivative (f' n x)) (at x within s)" and "\e>0. \N. \n\N. \x\s. \h. norm (setsum (\i. f' i x h) {.. e * norm h"