# HG changeset patch # User immler # Date 1566938599 -7200 # Node ID d9a71b41de497a21c28337ced85dd39949f23efb # Parent c81ac117afa642cc3f24271ee3f51ed3900a7e6c fixed typo diff -r c81ac117afa6 -r d9a71b41de49 src/HOL/Analysis/Lipschitz.thy --- a/src/HOL/Analysis/Lipschitz.thy Tue Aug 27 22:41:47 2019 +0200 +++ b/src/HOL/Analysis/Lipschitz.thy Tue Aug 27 22:43:19 2019 +0200 @@ -367,7 +367,7 @@ We give several variations around this statement. This is essentially a connectedness argument.\ -lemma locally_lipschitz_imp_lispchitz_aux: +lemma locally_lipschitz_imp_lipschitz_aux: fixes f::"real \ ('a::metric_space)" assumes "a \ b" "continuous_on {a..b} f" @@ -407,7 +407,7 @@ shows "lipschitz_on M {a..b} f" proof (rule lipschitz_onI[OF _ \M \ 0\]) have *: "dist (f t) (f s) \ M * (t-s)" if "s \ t" "s \ {a..b}" "t \ {a..b}" for s t - proof (rule locally_lipschitz_imp_lispchitz_aux, simp add: \s \ t\) + proof (rule locally_lipschitz_imp_lipschitz_aux, simp add: \s \ t\) show "continuous_on {s..t} f" using continuous_on_subset[OF assms(1)] that by auto fix x assume "x \ {s.. {a..