# HG changeset patch # User wenzelm # Date 966501292 -7200 # Node ID d9aa8ca06bc2818c68f32b85b5f65575c489c5d1 # Parent 3047ada4bc05300730851721c47003e68a148b0c converted to new-style theory; diff -r 3047ada4bc05 -r d9aa8ca06bc2 src/HOL/Lambda/Type.thy --- a/src/HOL/Lambda/Type.thy Thu Aug 17 10:34:28 2000 +0200 +++ b/src/HOL/Lambda/Type.thy Thu Aug 17 10:34:52 2000 +0200 @@ -3,38 +3,482 @@ Author: Stefan Berghofer Copyright 2000 TU Muenchen -Simply-typed lambda terms. +Simply-typed lambda terms. Subject reduction and strong normalization +of simply-typed lambda terms. Partly based on a paper proof by Ralph +Matthes. *) -Type = InductTermi + +theory Type = InductTermi: -datatype typ = Atom nat - | Fun typ typ (infixr "=>" 200) +datatype "typ" = + Atom nat + | Fun "typ" "typ" (infixr "=>" 200) consts typing :: "((nat => typ) * dB * typ) set" syntax - "@type" :: "[nat => typ, dB, typ] => bool" ("_ |- _ : _" [50,50,50] 50) - "=>>" :: "[typ list, typ] => typ" (infixl 150) + "_typing" :: "[nat => typ, dB, typ] => bool" ("_ |- _ : _" [50,50,50] 50) + "_funs" :: "[typ list, typ] => typ" (infixl "=>>" 150) translations "env |- t : T" == "(env, t, T) : typing" "Ts =>> T" == "foldr Fun Ts T" +lemmas [intro!] = IT.BetaI IT.LambdaI IT.VarI + +(* FIXME +declare IT.intros [intro!] +*) + inductive typing -intrs - VAR "env x = T ==> env |- Var x : T" - ABS "(nat_case T env) |- t : U ==> env |- (Abs t) : (T => U)" - APP "[| env |- s : T => U; env |- t : T |] ==> env |- (s $ t) : U" +intros (* FIXME [intro!] *) + Var: "env x = T ==> env |- Var x : T" + Abs: "(nat_case T env) |- t : U ==> env |- (Abs t) : (T => U)" + App: "env |- s : T => U ==> env |- t : T ==> env |- (s $ t) : U" + +lemmas [intro!] = App Abs Var consts "types" :: "[nat => typ, dB list, typ list] => bool" - primrec "types e [] Ts = (Ts = [])" - "types e (t # ts) Ts = (case Ts of + "types e (t # ts) Ts = + (case Ts of [] => False | T # Ts => e |- t : T & types e ts Ts)" +(* FIXME order *) +inductive_cases [elim!]: + "e |- Abs t : T" + "e |- t $ u : T" + "e |- Var i : T" + +inductive_cases [elim!]: + "x # xs : lists S" + + +text {* Some tests. *} + +lemma "\T U. e |- Abs (Abs (Abs (Var 1 $ (Var 2 $ Var 1 $ Var 0)))) : T \ U = T" + apply (intro exI conjI) + apply force + apply (rule refl) + done + +lemma "\T U. e |- Abs (Abs (Abs (Var 2 $ Var 0 $ (Var 1 $ Var 0)))) : T \ U = T"; + apply (intro exI conjI) + apply force + apply (rule refl) + done + + +text {* n-ary function types *} + +lemma list_app_typeD [rulify]: + "\t T. e |- t $$ ts : T --> (\Ts. e |- t : Ts =>> T \ types e ts Ts)" + apply (induct_tac ts) + apply simp + apply (intro strip) + apply simp + apply (erule_tac x = "t $ a" in allE) + apply (erule_tac x = T in allE) + apply (erule impE) + apply assumption + apply (elim exE conjE) + apply (ind_cases "e |- t $ u : T") + apply (rule_tac x = "Ta # Ts" in exI) + apply simp + done + +lemma list_app_typeI [rulify]: + "\t T Ts. e |- t : Ts =>> T --> types e ts Ts --> e |- t $$ ts : T" + apply (induct_tac ts) + apply (intro strip) + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (erule_tac x = "t $ a" in allE) + apply (erule_tac x = T in allE) + apply (erule_tac x = lista in allE) + apply (erule impE) + apply (erule conjE) + apply (erule typing.App) + apply assumption + apply blast + done + +lemma lists_types [rulify]: + "\Ts. types e ts Ts --> ts : lists {t. \T. e |- t : T}" + apply (induct_tac ts) + apply (intro strip) + apply (case_tac Ts) + apply simp + apply (rule lists.Nil) + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (rule lists.Cons) + apply blast + apply blast + done + + +text {* lifting preserves termination and well-typedness *} + +lemma lift_map [rulify, simp]: + "\t. lift (t $$ ts) i = lift t i $$ map (\t. lift t i) ts" + apply (induct_tac ts) + apply simp_all + done + +lemma subst_map [rulify, simp]: + "\t. subst (t $$ ts) u i = subst t u i $$ map (\t. subst t u i) ts" + apply (induct_tac ts) + apply simp_all + done + +lemma lift_IT [rulify, intro!]: + "t : IT ==> \i. lift t i : IT" + apply (erule IT.induct) + apply (rule allI) + apply (simp (no_asm)) + apply (rule conjI) + apply + (rule impI, + rule IT.VarI, + erule lists.induct, + simp (no_asm), + rule lists.Nil, + simp (no_asm), + erule IntE, + rule lists.Cons, + blast, + assumption)+ + apply auto + done + +lemma lifts_IT [rulify]: + "ts : lists IT --> map (\t. lift t 0) ts : lists IT" + apply (induct_tac ts) + apply auto + done + + +lemma shift_env [simp]: + "nat_case T + (\j. if j < i then e j else if j = i then Ua else e (j - 1)) = + (\j. if j < Suc i then nat_case T e j else if j = Suc i then Ua + else nat_case T e (j - 1))" + apply (rule ext) + apply (case_tac j) + apply simp + apply (case_tac nat) + apply simp_all + done + +lemma lift_type' [rulify]: + "e |- t : T ==> \i U. + (\j. if j < i then e j + else if j = i then U + else e (j - 1)) |- lift t i : T" + apply (erule typing.induct) + apply auto + done + + +lemma lift_type [intro!]: + "e |- t : T ==> nat_case U e |- lift t 0 : T" + apply (subgoal_tac + "nat_case U e = + (\j. if j < 0 then e j + else if j = 0 then U else e (j - 1))") + apply (erule ssubst) + apply (erule lift_type') + apply (rule ext) + apply (case_tac j) + apply simp_all + done + +lemma lift_types [rulify]: + "\Ts. types e ts Ts --> + types (\j. if j < i then e j + else if j = i then U + else e (j - 1)) (map (\t. lift t i) ts) Ts" + apply (induct_tac ts) + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp_all + apply (rule lift_type') + apply (erule conjunct1) + done + + +text {* substitution lemma *} + +lemma subst_lemma [rulify]: + "e |- t : T ==> \e' i U u. + e = (\j. if j < i then e' j + else if j = i then U + else e' (j-1)) --> + e' |- u : U --> e' |- t[u/i] : T" + apply (erule typing.induct) + apply (intro strip) + apply (case_tac "x = i") + apply simp + apply (frule linorder_neq_iff [THEN iffD1]) + apply (erule disjE) + apply simp + apply (rule typing.Var) + apply assumption + apply (frule order_less_not_sym) + apply (simp only: subst_gt split: split_if add: if_False) + apply (rule typing.Var) + apply assumption + apply fastsimp + apply fastsimp + done + +lemma substs_lemma [rulify]: + "e |- u : T ==> + \Ts. types (\j. if j < i then e j + else if j = i then T else e (j - 1)) ts Ts --> + types e (map (%t. t[u/i]) ts) Ts" + apply (induct_tac ts) + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (erule conjE) + apply (erule subst_lemma) + apply (rule refl) + apply assumption + done + + +text {* subject reduction *} + +lemma subject_reduction [rulify]: + "e |- t : T ==> \t'. t -> t' --> e |- t' : T" + apply (erule typing.induct) + apply blast + apply blast + apply (intro strip) + apply (ind_cases "s $ t -> t'") + apply hypsubst + apply (ind_cases "env |- Abs t : T => U") + apply (rule subst_lemma) + apply assumption + prefer 2 + apply assumption + apply (rule ext) + apply (case_tac j) + + apply simp + apply simp + apply fast + apply fast + (* FIXME apply auto *) + done + +text {* additional lemmas *} + +lemma app_last: "(t $$ ts) $ u = t $$ (ts @ [u])" + apply simp + done + + +lemma subst_Var_IT [rulify]: "r : IT ==> \i j. r[Var i/j] : IT" + apply (erule IT.induct) + txt {* Var *} + apply (intro strip) + apply (simp (no_asm) add: subst_Var) + apply + ((rule conjI impI)+, + rule IT.VarI, + erule lists.induct, + simp (no_asm), + rule lists.Nil, + simp (no_asm), + erule IntE, + erule CollectE, + rule lists.Cons, + fast, + assumption)+ + txt {* Lambda *} + apply (intro strip) + apply simp + apply (rule IT.LambdaI) + apply fast + txt {* Beta *} + apply (intro strip) + apply (simp (no_asm_use) add: subst_subst [symmetric]) + apply (rule IT.BetaI) + apply auto + done + +lemma Var_IT: "Var n \ IT" + apply (subgoal_tac "Var n $$ [] \ IT") + apply simp + apply (rule IT.VarI) + apply (rule lists.Nil) + done + +lemma app_Var_IT: "t : IT ==> t $ Var i : IT" + apply (erule IT.induct) + apply (subst app_last) + apply (rule IT.VarI) + apply simp + apply (rule lists.Cons) + apply (rule Var_IT) + apply (rule lists.Nil) + apply (rule IT.BetaI [where ?ss = "[]", unfold foldl_Nil [THEN eq_reflection]]) + apply (erule subst_Var_IT) + apply (rule Var_IT) + apply (subst app_last) + apply (rule IT.BetaI) + apply (subst app_last [symmetric]) + apply assumption + apply assumption + done + + +text {* Well-typed substitution preserves termination. *} + +lemma subst_type_IT [rulify]: + "\t. t : IT --> (\e T u i. + (\j. if j < i then e j + else if j = i then U + else e (j - 1)) |- t : T --> + u : IT --> e |- u : U --> t[u/i] : IT)" + apply (rule_tac f = size and a = U in measure_induct) + apply (rule allI) + apply (rule impI) + apply (erule IT.induct) + txt {* Var *} + apply (intro strip) + apply (case_tac "n = i") + txt {* n=i *} + apply (case_tac rs) + apply simp + apply simp + apply (drule list_app_typeD) + apply (elim exE conjE) + apply (ind_cases "e |- t $ u : T") + apply (ind_cases "e |- Var i : T") + apply (drule_tac s = "(?T::typ) => ?U" in sym) + apply simp + apply (subgoal_tac "lift u 0 $ Var 0 : IT") + prefer 2 + apply (rule app_Var_IT) + apply (erule lift_IT) + apply (subgoal_tac "(lift u 0 $ Var 0)[a[u/i]/0] : IT") + apply (simp (no_asm_use)) + apply (subgoal_tac "(Var 0 $$ map (%t. lift t 0) + (map (%t. t[u/i]) list))[(u $ a[u/i])/0] : IT") + apply (simp (no_asm_use) del: map_compose add: map_compose [symmetric] o_def) + apply (erule_tac x = "Ts =>> T" in allE) + apply (erule impE) + apply simp + apply (erule_tac x = "Var 0 $$ + map (%t. lift t 0) (map (%t. t[u/i]) list)" in allE) + apply (erule impE) + apply (rule IT.VarI) + apply (rule lifts_IT) + apply (drule lists_types) + apply + (ind_cases "x # xs : lists (Collect P)", + erule lists_IntI [THEN lists.induct], + assumption) + apply fastsimp + apply fastsimp + apply (erule_tac x = e in allE) + apply (erule_tac x = T in allE) + apply (erule_tac x = "u $ a[u/i]" in allE) + apply (erule_tac x = 0 in allE) + apply (fastsimp intro!: list_app_typeI lift_types subst_lemma substs_lemma) + +(* FIXME + apply (tactic { * fast_tac (claset() + addSIs [thm "list_app_typeI", thm "lift_types", thm "subst_lemma", thm "substs_lemma"] + addss simpset()) 1 * }) *) + + apply (erule_tac x = Ta in allE) + apply (erule impE) + apply simp + apply (erule_tac x = "lift u 0 $ Var 0" in allE) + apply (erule impE) + apply assumption + apply (erule_tac x = e in allE) + apply (erule_tac x = "Ts =>> T" in allE) + apply (erule_tac x = "a[u/i]" in allE) + apply (erule_tac x = 0 in allE) + apply (erule impE) + apply (rule typing.App) + apply (erule lift_type') + apply (rule typing.Var) + apply simp + apply (fast intro!: subst_lemma) + txt {* n~=i *} + apply (drule list_app_typeD) + apply (erule exE) + apply (erule conjE) + apply (drule lists_types) + apply (subgoal_tac "map (%x. x[u/i]) rs : lists IT") + apply (simp add: subst_Var) + apply fast + apply (erule lists_IntI [THEN lists.induct]) + apply assumption + apply fastsimp + apply fastsimp + txt {* Lambda *} + apply fastsimp + txt {* Beta *} + apply (intro strip) + apply (simp (no_asm)) + apply (rule IT.BetaI) + apply (simp (no_asm) del: subst_map add: subst_subst subst_map [symmetric]) + apply (drule subject_reduction) + apply (rule apps_preserves_beta) + apply (rule beta.beta) + apply fast + apply (drule list_app_typeD) + apply fast + done + + +text {* main theorem: well-typed terms are strongly normalizing *} + +lemma type_implies_IT: "e |- t : T ==> t : IT" + apply (erule typing.induct) + apply (rule Var_IT) + apply (erule IT.LambdaI) + apply (subgoal_tac "(Var 0 $ lift t 0)[s/0] : IT") + apply simp + apply (rule subst_type_IT) + apply (rule lists.Nil [THEN 2 lists.Cons [THEN IT.VarI], unfold foldl_Nil [THEN eq_reflection] + foldl_Cons [THEN eq_reflection]]) + apply (erule lift_IT) + apply (rule typing.App) + apply (rule typing.Var) + apply simp + apply (erule lift_type') + apply assumption + apply assumption + done + +theorem type_implies_termi: "e |- t : T ==> t : termi beta" + apply (rule IT_implies_termi) + apply (erule type_implies_IT) + done + end