# HG changeset patch # User haftmann # Date 1314385883 -7200 # Node ID da75ffe3d988bce2d6a876326279c0ac7353460f # Parent a24b97aeec0cb73d7a0cfa7bed63cb5074919719 separating predicates and sets syntactically diff -r a24b97aeec0c -r da75ffe3d988 src/HOL/Library/Cset.thy --- a/src/HOL/Library/Cset.thy Fri Aug 26 18:24:22 2011 +0200 +++ b/src/HOL/Library/Cset.thy Fri Aug 26 21:11:23 2011 +0200 @@ -10,16 +10,27 @@ subsection {* Lifting *} typedef (open) 'a set = "UNIV :: 'a set set" - morphisms member Set by rule+ + morphisms set_of Set by rule+ hide_type (open) set +lemma set_of_Set [simp]: + "set_of (Set A) = A" + by (rule Set_inverse) rule + +lemma Set_set_of [simp]: + "Set (set_of A) = A" + by (fact set_of_inverse) + +definition member :: "'a Cset.set \ 'a \ bool" where + "member A x \ x \ set_of A" + +lemma member_set_of: + "set_of = member" + by (rule ext)+ (simp add: member_def mem_def) + lemma member_Set [simp]: - "member (Set A) = A" - by (rule Set_inverse) rule - -lemma Set_member [simp]: - "Set (member A) = A" - by (fact member_inverse) + "member (Set A) x \ x \ A" + by (simp add: member_def) lemma Set_inject [simp]: "Set A = Set B \ A = B" @@ -27,7 +38,7 @@ lemma set_eq_iff: "A = B \ member A = member B" - by (simp add: member_inject) + by (auto simp add: fun_eq_iff set_of_inject [symmetric] member_def mem_def) hide_fact (open) set_eq_iff lemma set_eqI: @@ -41,16 +52,16 @@ begin definition less_eq_set :: "'a Cset.set \ 'a Cset.set \ bool" where - [simp]: "A \ B \ member A \ member B" + [simp]: "A \ B \ set_of A \ set_of B" definition less_set :: "'a Cset.set \ 'a Cset.set \ bool" where - [simp]: "A < B \ member A \ member B" + [simp]: "A < B \ set_of A \ set_of B" definition inf_set :: "'a Cset.set \ 'a Cset.set \ 'a Cset.set" where - [simp]: "inf A B = Set (member A \ member B)" + [simp]: "inf A B = Set (set_of A \ set_of B)" definition sup_set :: "'a Cset.set \ 'a Cset.set \ 'a Cset.set" where - [simp]: "sup A B = Set (member A \ member B)" + [simp]: "sup A B = Set (set_of A \ set_of B)" definition bot_set :: "'a Cset.set" where [simp]: "bot = Set {}" @@ -59,13 +70,13 @@ [simp]: "top = Set UNIV" definition uminus_set :: "'a Cset.set \ 'a Cset.set" where - [simp]: "- A = Set (- (member A))" + [simp]: "- A = Set (- (set_of A))" definition minus_set :: "'a Cset.set \ 'a Cset.set \ 'a Cset.set" where - [simp]: "A - B = Set (member A - member B)" + [simp]: "A - B = Set (set_of A - set_of B)" instance proof -qed (auto intro: Cset.set_eqI) +qed (auto intro!: Cset.set_eqI simp add: member_def mem_def) end @@ -73,16 +84,19 @@ begin definition Inf_set :: "'a Cset.set set \ 'a Cset.set" where - [simp]: "Inf_set As = Set (Inf (image member As))" + [simp]: "Inf_set As = Set (Inf (image set_of As))" definition Sup_set :: "'a Cset.set set \ 'a Cset.set" where - [simp]: "Sup_set As = Set (Sup (image member As))" + [simp]: "Sup_set As = Set (Sup (image set_of As))" instance proof -qed (auto simp add: le_fun_def le_bool_def) +qed (auto simp add: le_fun_def) end +instance Cset.set :: (type) complete_boolean_algebra proof +qed (unfold INF_def SUP_def, auto) + subsection {* Basic operations *} @@ -93,40 +107,40 @@ hide_const (open) UNIV definition is_empty :: "'a Cset.set \ bool" where - [simp]: "is_empty A \ More_Set.is_empty (member A)" + [simp]: "is_empty A \ More_Set.is_empty (set_of A)" definition insert :: "'a \ 'a Cset.set \ 'a Cset.set" where - [simp]: "insert x A = Set (Set.insert x (member A))" + [simp]: "insert x A = Set (Set.insert x (set_of A))" definition remove :: "'a \ 'a Cset.set \ 'a Cset.set" where - [simp]: "remove x A = Set (More_Set.remove x (member A))" + [simp]: "remove x A = Set (More_Set.remove x (set_of A))" definition map :: "('a \ 'b) \ 'a Cset.set \ 'b Cset.set" where - [simp]: "map f A = Set (image f (member A))" + [simp]: "map f A = Set (image f (set_of A))" enriched_type map: map by (simp_all add: fun_eq_iff image_compose) definition filter :: "('a \ bool) \ 'a Cset.set \ 'a Cset.set" where - [simp]: "filter P A = Set (More_Set.project P (member A))" + [simp]: "filter P A = Set (More_Set.project P (set_of A))" definition forall :: "('a \ bool) \ 'a Cset.set \ bool" where - [simp]: "forall P A \ Ball (member A) P" + [simp]: "forall P A \ Ball (set_of A) P" definition exists :: "('a \ bool) \ 'a Cset.set \ bool" where - [simp]: "exists P A \ Bex (member A) P" + [simp]: "exists P A \ Bex (set_of A) P" definition card :: "'a Cset.set \ nat" where - [simp]: "card A = Finite_Set.card (member A)" + [simp]: "card A = Finite_Set.card (set_of A)" context complete_lattice begin definition Infimum :: "'a Cset.set \ 'a" where - [simp]: "Infimum A = Inf (member A)" + [simp]: "Infimum A = Inf (set_of A)" definition Supremum :: "'a Cset.set \ 'a" where - [simp]: "Supremum A = Sup (member A)" + [simp]: "Supremum A = Sup (set_of A)" end @@ -140,134 +154,138 @@ text {* conversion from @{typ "'a Predicate.pred"} *} -definition pred_of_cset :: "'a Cset.set \ 'a Predicate.pred" -where [code del]: "pred_of_cset = Predicate.Pred \ Cset.member" +definition pred_of_cset :: "'a Cset.set \ 'a Predicate.pred" where + [code del]: "pred_of_cset = Predicate.Pred \ Cset.member" -definition of_pred :: "'a Predicate.pred \ 'a Cset.set" -where "of_pred = Cset.Set \ Predicate.eval" +definition of_pred :: "'a Predicate.pred \ 'a Cset.set" where + "of_pred = Cset.Set \ Collect \ Predicate.eval" -definition of_seq :: "'a Predicate.seq \ 'a Cset.set" -where "of_seq = of_pred \ Predicate.pred_of_seq" +definition of_seq :: "'a Predicate.seq \ 'a Cset.set" where + "of_seq = of_pred \ Predicate.pred_of_seq" text {* monad operations *} definition single :: "'a \ 'a Cset.set" where "single a = Set {a}" -definition bind :: "'a Cset.set \ ('a \ 'b Cset.set) \ 'b Cset.set" - (infixl "\=" 70) - where "A \= f = Set (\x \ member A. member (f x))" +definition bind :: "'a Cset.set \ ('a \ 'b Cset.set) \ 'b Cset.set" (infixl "\=" 70) where + "A \= f = (SUP x : set_of A. f x)" + subsection {* Simplified simprules *} -lemma empty_simp [simp]: "member Cset.empty = {}" - by(simp) +lemma empty_simp [simp]: "member Cset.empty = bot" + by (simp add: fun_eq_iff bot_apply) -lemma UNIV_simp [simp]: "member Cset.UNIV = UNIV" - by simp +lemma UNIV_simp [simp]: "member Cset.UNIV = top" + by (simp add: fun_eq_iff top_apply) lemma is_empty_simp [simp]: - "is_empty A \ member A = {}" + "is_empty A \ set_of A = {}" by (simp add: More_Set.is_empty_def) declare is_empty_def [simp del] lemma remove_simp [simp]: - "remove x A = Set (member A - {x})" + "remove x A = Set (set_of A - {x})" by (simp add: More_Set.remove_def) declare remove_def [simp del] lemma filter_simp [simp]: - "filter P A = Set {x \ member A. P x}" + "filter P A = Set {x \ set_of A. P x}" by (simp add: More_Set.project_def) declare filter_def [simp del] -lemma member_set [simp]: - "member (Cset.set xs) = set xs" +lemma set_of_set [simp]: + "set_of (Cset.set xs) = set xs" by (simp add: set_def) -hide_fact (open) member_set set_def +hide_fact (open) set_def lemma set_simps [simp]: "Cset.set [] = Cset.empty" "Cset.set (x # xs) = insert x (Cset.set xs)" by(simp_all add: Cset.set_def) -lemma member_SUPR [simp]: +lemma member_SUP [simp]: "member (SUPR A f) = SUPR A (member \ f)" -unfolding SUPR_def by simp + by (auto simp add: fun_eq_iff SUP_apply member_def, unfold SUP_def, auto) lemma member_bind [simp]: - "member (P \= f) = member (SUPR (member P) f)" -by (simp add: bind_def Cset.set_eq_iff) + "member (P \= f) = SUPR (set_of P) (member \ f)" + by (simp add: bind_def Cset.set_eq_iff) lemma member_single [simp]: - "member (single a) = {a}" -by(simp add: single_def) + "member (single a) = (\x. x \ {a})" + by (simp add: single_def fun_eq_iff) lemma single_sup_simps [simp]: shows single_sup: "sup (single a) A = insert a A" and sup_single: "sup A (single a) = insert a A" -by(auto simp add: Cset.set_eq_iff) + by (auto simp add: Cset.set_eq_iff single_def) lemma single_bind [simp]: "single a \= B = B a" -by(simp add: bind_def single_def) + by (simp add: Cset.set_eq_iff SUP_insert single_def) lemma bind_bind: "(A \= B) \= C = A \= (\x. B x \= C)" -by(simp add: bind_def) - + by (simp add: bind_def, simp only: SUP_def image_image, simp) + lemma bind_single [simp]: "A \= single = A" -by(simp add: bind_def single_def) + by (simp add: Cset.set_eq_iff SUP_apply fun_eq_iff single_def member_def) lemma bind_const: "A \= (\_. B) = (if Cset.is_empty A then Cset.empty else B)" -by(auto simp add: Cset.set_eq_iff) + by (auto simp add: Cset.set_eq_iff fun_eq_iff) lemma empty_bind [simp]: "Cset.empty \= f = Cset.empty" -by(simp add: Cset.set_eq_iff) + by (simp add: Cset.set_eq_iff fun_eq_iff bot_apply) lemma member_of_pred [simp]: - "member (of_pred P) = {x. Predicate.eval P x}" -by(simp add: of_pred_def Collect_def) + "member (of_pred P) = (\x. x \ {x. Predicate.eval P x})" + by (simp add: of_pred_def fun_eq_iff) lemma member_of_seq [simp]: - "member (of_seq xq) = {x. Predicate.member xq x}" -by(simp add: of_seq_def eval_member) + "member (of_seq xq) = (\x. x \ {x. Predicate.member xq x})" + by (simp add: of_seq_def eval_member) lemma eval_pred_of_cset [simp]: "Predicate.eval (pred_of_cset A) = Cset.member A" -by(simp add: pred_of_cset_def) + by (simp add: pred_of_cset_def) subsection {* Default implementations *} lemma set_code [code]: - "Cset.set = foldl (\A x. insert x A) Cset.empty" -proof(rule ext, rule Cset.set_eqI) - fix xs - show "member (Cset.set xs) = member (foldl (\A x. insert x A) Cset.empty xs)" - by(induct xs rule: rev_induct)(simp_all) + "Cset.set = (\xs. fold insert xs Cset.empty)" +proof (rule ext, rule Cset.set_eqI) + fix xs :: "'a list" + show "member (Cset.set xs) = member (fold insert xs Cset.empty)" + by (simp add: fold_commute_apply [symmetric, where ?h = Set and ?g = Set.insert] + fun_eq_iff Cset.set_def union_set [symmetric]) qed lemma single_code [code]: "single a = insert a Cset.empty" -by(simp add: Cset.single_def) + by (simp add: Cset.single_def) lemma of_pred_code [code]: "of_pred (Predicate.Seq f) = (case f () of Predicate.Empty \ Cset.empty | Predicate.Insert x P \ Cset.insert x (of_pred P) | Predicate.Join P xq \ sup (of_pred P) (of_seq xq))" -by(auto split: seq.split - simp add: Predicate.Seq_def of_pred_def eval_member Cset.set_eq_iff) + apply (auto split: seq.split simp add: Predicate.Seq_def of_pred_def Cset.set_eq_iff sup_apply eval_member [symmetric] member_def [symmetric] Collect_def mem_def member_set_of) + apply (unfold Set.insert_def Collect_def sup_apply member_set_of) + apply simp_all + done lemma of_seq_code [code]: "of_seq Predicate.Empty = Cset.empty" "of_seq (Predicate.Insert x P) = Cset.insert x (of_pred P)" "of_seq (Predicate.Join P xq) = sup (of_pred P) (of_seq xq)" -by(auto simp add: of_seq_def of_pred_def Cset.set_eq_iff) - -declare mem_def [simp del] + apply (auto simp add: of_seq_def of_pred_def Cset.set_eq_iff mem_def Collect_def) + apply (unfold Set.insert_def Collect_def sup_apply member_set_of) + apply simp_all + done no_notation bind (infixl "\=" 70) @@ -275,7 +293,7 @@ Inter Union bind single of_pred of_seq hide_fact (open) set_def pred_of_cset_def of_pred_def of_seq_def single_def - bind_def empty_simp UNIV_simp member_set set_simps member_SUPR member_bind + bind_def empty_simp UNIV_simp set_simps member_bind member_single single_sup_simps single_sup sup_single single_bind bind_bind bind_single bind_const empty_bind member_of_pred member_of_seq eval_pred_of_cset set_code single_code of_pred_code of_seq_code