# HG changeset patch # User wenzelm # Date 1206729834 -3600 # Node ID dac4e2bce00dc9ffac8f8f160ff436e723cf0f8b # Parent da989545e59c6f0f883f69364a31d88803e41d9f avoid rebinding of existing facts; diff -r da989545e59c -r dac4e2bce00d src/HOL/Arith_Tools.thy --- a/src/HOL/Arith_Tools.thy Fri Mar 28 19:12:39 2008 +0100 +++ b/src/HOL/Arith_Tools.thy Fri Mar 28 19:43:54 2008 +0100 @@ -588,7 +588,7 @@ in val field_comp_conv = comp_conv; val fieldgb_declaration = - NormalizerData.funs @{thm class_fieldgb.fieldgb_axioms} + NormalizerData.funs @{thm class_fieldgb.fieldgb_axioms'} {is_const = K numeral_is_const, dest_const = K dest_const, mk_const = mk_const, diff -r da989545e59c -r dac4e2bce00d src/HOL/Groebner_Basis.thy --- a/src/HOL/Groebner_Basis.thy Fri Mar 28 19:12:39 2008 +0100 +++ b/src/HOL/Groebner_Basis.thy Fri Mar 28 19:43:54 2008 +0100 @@ -159,7 +159,7 @@ qed -lemmas gb_semiring_axioms = +lemmas gb_semiring_axioms' = gb_semiring_axioms [normalizer semiring ops: semiring_ops semiring rules: semiring_rules] @@ -216,7 +216,7 @@ end *} -declaration {* normalizer_funs @{thm class_semiring.gb_semiring_axioms} *} +declaration {* normalizer_funs @{thm class_semiring.gb_semiring_axioms'} *} locale gb_ring = gb_semiring + @@ -232,7 +232,7 @@ lemmas ring_rules = neg_mul sub_add -lemmas gb_ring_axioms = +lemmas gb_ring_axioms' = gb_ring_axioms [normalizer semiring ops: semiring_ops semiring rules: semiring_rules @@ -247,7 +247,7 @@ by unfold_locales simp_all -declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms} *} +declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *} use "Tools/Groebner_Basis/normalizer.ML" @@ -263,7 +263,7 @@ and inverse: "inverse x = divide r1 x" begin -lemmas gb_field_axioms = +lemmas gb_field_axioms' = gb_field_axioms [normalizer semiring ops: semiring_ops semiring rules: semiring_rules @@ -307,9 +307,9 @@ thus "x = add x a \ a = r0" by (auto simp add: add_c add_0) qed -declare gb_semiring_axioms [normalizer del] +declare gb_semiring_axioms' [normalizer del] -lemmas semiringb_axioms = semiringb_axioms [normalizer +lemmas semiringb_axioms' = semiringb_axioms [normalizer semiring ops: semiring_ops semiring rules: semiring_rules idom rules: noteq_reduce add_scale_eq_noteq] @@ -320,9 +320,9 @@ assumes subr0_iff: "sub x y = r0 \ x = y" begin -declare gb_ring_axioms [normalizer del] +declare gb_ring_axioms' [normalizer del] -lemmas ringb_axioms = ringb_axioms [normalizer +lemmas ringb_axioms' = ringb_axioms [normalizer semiring ops: semiring_ops semiring rules: semiring_rules ring ops: ring_ops @@ -356,7 +356,7 @@ thus "w = x" by simp qed -declaration {* normalizer_funs @{thm class_ringb.ringb_axioms} *} +declaration {* normalizer_funs @{thm class_ringb.ringb_axioms'} *} interpretation natgb: semiringb ["op +" "op *" "op ^" "0::nat" "1"] @@ -380,14 +380,14 @@ thus "(w * y + x * z = w * z + x * y) = (w = x \ y = z)" by auto qed -declaration {* normalizer_funs @{thm natgb.semiringb_axioms} *} +declaration {* normalizer_funs @{thm natgb.semiringb_axioms'} *} locale fieldgb = ringb + gb_field begin -declare gb_field_axioms [normalizer del] +declare gb_field_axioms' [normalizer del] -lemmas fieldgb_axioms = fieldgb_axioms [normalizer +lemmas fieldgb_axioms' = fieldgb_axioms [normalizer semiring ops: semiring_ops semiring rules: semiring_rules ring ops: ring_ops