# HG changeset patch # User huffman # Date 1228435545 28800 # Node ID dc0ab579a5ca5c52a033327a5c8458cf13006000 # Parent 1ff53ff7041dc4eef7bb26dd87afc830c0506e84 remove duplicated lemmas diff -r 1ff53ff7041d -r dc0ab579a5ca src/HOL/Groebner_Basis.thy --- a/src/HOL/Groebner_Basis.thy Thu Dec 04 13:30:09 2008 -0800 +++ b/src/HOL/Groebner_Basis.thy Thu Dec 04 16:05:45 2008 -0800 @@ -169,7 +169,11 @@ proof qed (auto simp add: ring_simps power_Suc) lemmas nat_arith = - add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of + add_nat_number_of + diff_nat_number_of + mult_nat_number_of + eq_nat_number_of + less_nat_number_of lemma not_iszero_Numeral1: "\ iszero (Numeral1::'a::number_ring)" by (simp add: numeral_1_eq_1) @@ -458,7 +462,6 @@ declare zmod_eq_dvd_iff[algebra] declare nat_mod_eq_iff[algebra] - subsection{* Groebner Bases for fields *} interpretation class_fieldgb: @@ -607,14 +610,6 @@ @{cpat "((?a::(?'a::{field, ord}))/ ?b) = ?c"}], name = "ord_frac_simproc", proc = proc3, identifier = []} -val nat_arith = map thm ["add_nat_number_of", "diff_nat_number_of", - "mult_nat_number_of", "eq_nat_number_of", "less_nat_number_of"] - -val comp_arith = (map thm ["Let_def", "if_False", "if_True", "add_0", - "add_Suc", "add_number_of_left", "mult_number_of_left", - "Suc_eq_add_numeral_1"])@ - (map (fn s => thm s RS sym) ["numeral_1_eq_1", "numeral_0_eq_0"]) - @ @{thms arith_simps} @ nat_arith @ @{thms rel_simps} val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"}, @{thm "divide_Numeral1"}, @{thm "Ring_and_Field.divide_zero"}, @{thm "divide_Numeral0"}, @@ -630,7 +625,7 @@ in val comp_conv = (Simplifier.rewrite (HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"} - addsimps ths addsimps comp_arith addsimps simp_thms + addsimps ths addsimps simp_thms addsimprocs field_cancel_numeral_factors addsimprocs [add_frac_frac_simproc, add_frac_num_simproc, ord_frac_simproc]