# HG changeset patch # User paulson # Date 843496011 -7200 # Node ID dd3e2a91aeca8e27423931398ccc1f3c93df3321 # Parent 83db8207c9e5fdb6b7c70d36052edea1fe0bc3ad Proofs made more robust to work in presence of le_refl diff -r 83db8207c9e5 -r dd3e2a91aeca src/HOL/ex/Puzzle.ML --- a/src/HOL/ex/Puzzle.ML Mon Sep 23 18:26:12 1996 +0200 +++ b/src/HOL/ex/Puzzle.ML Mon Sep 23 18:26:51 1996 +0200 @@ -21,8 +21,10 @@ by (rtac classical 1); by (dtac not_leE 1); by (subgoal_tac "f(na) <= f(f(na))" 1); -by (best_tac (!claset addIs [lessD,Puzzle.f_ax,le_less_trans,le_trans]) 1); -by (fast_tac (!claset addIs [Puzzle.f_ax]) 1); +by (fast_tac (!claset addIs [Puzzle.f_ax]) 2); +br lessD 1; +by (best_tac (!claset delrules [le_refl] + addIs [Puzzle.f_ax, le_less_trans]) 1); val lemma = result() RS spec RS mp; goal Puzzle.thy "n <= f(n)"; @@ -30,21 +32,21 @@ qed "lemma1"; goal Puzzle.thy "f(n) < f(Suc(n))"; -by (fast_tac (!claset addIs [Puzzle.f_ax,le_less_trans,lemma1]) 1); +by (deepen_tac (!claset addIs [Puzzle.f_ax, le_less_trans, lemma1]) 0 1); qed "lemma2"; val prems = goal Puzzle.thy "(!!n.f(n) <= f(Suc(n))) ==> m f(m) <= f(n)"; by (res_inst_tac[("n","n")]nat_induct 1); by (Simp_tac 1); by (simp_tac (!simpset addsimps [less_Suc_eq]) 1); -by (fast_tac (!claset addIs (le_trans::prems)) 1); -bind_thm("mono_lemma1", result() RS mp); +by (best_tac (!claset addIs (le_trans::prems)) 1); +qed_spec_mp "mono_lemma1"; val [p1,p2] = goal Puzzle.thy "[| !! n. f(n)<=f(Suc(n)); m<=n |] ==> f(m) <= f(n)"; by (rtac (p2 RS le_imp_less_or_eq RS disjE) 1); by (etac (p1 RS mono_lemma1) 1); -by (fast_tac (!claset addIs [le_refl]) 1); +by (Fast_tac 1); qed "mono_lemma"; val prems = goal Puzzle.thy "m <= n ==> f(m) <= f(n)";