# HG changeset patch # User hoelzl # Date 1349863956 -7200 # Node ID dd8dffaf84b91ef7e45aeaac0c4efae2cdf9a427 # Parent f3471f09bb86d0dcd08b198d02ed830249d5af6e continuous version of mutual_information_eq_entropy_conditional_entropy diff -r f3471f09bb86 -r dd8dffaf84b9 src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Wed Oct 10 12:12:35 2012 +0200 +++ b/src/HOL/Probability/Information.thy Wed Oct 10 12:12:36 2012 +0200 @@ -1367,6 +1367,20 @@ finally show ?thesis .. qed +lemma (in information_space) mutual_information_eq_entropy_conditional_entropy': + fixes Px :: "'b \ real" and Py :: "'c \ real" and Pxy :: "('b \ 'c) \ real" + assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" + assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py" + assumes Pxy: "distributed M (S \\<^isub>M T) (\x. (X x, Y x)) Pxy" + assumes Ix: "integrable(S \\<^isub>M T) (\x. Pxy x * log b (Px (fst x)))" + assumes Iy: "integrable(S \\<^isub>M T) (\x. Pxy x * log b (Py (snd x)))" + assumes Ixy: "integrable(S \\<^isub>M T) (\x. Pxy x * log b (Pxy x))" + shows "mutual_information b S T X Y = entropy b S X - conditional_entropy b S T X Y" + using + mutual_information_eq_entropy_conditional_entropy_distr[OF S T Px Py Pxy Ix Iy Ixy] + conditional_entropy_eq_entropy[OF S T Py Pxy Ixy Iy] + by simp + lemma (in information_space) mutual_information_eq_entropy_conditional_entropy: assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" shows "\(X ; Y) = \(X) - \(X | Y)"