# HG changeset patch # User huffman # Date 1187722775 -7200 # Node ID de9997397317fc23276b08292c3a87dad65d58e8 # Parent b9718519f3d227394a2b2f261440d5b821d8293f remove redundant lemmas diff -r b9718519f3d2 -r de9997397317 src/HOL/Word/Num_Lemmas.thy --- a/src/HOL/Word/Num_Lemmas.thy Tue Aug 21 20:53:37 2007 +0200 +++ b/src/HOL/Word/Num_Lemmas.thy Tue Aug 21 20:59:35 2007 +0200 @@ -10,11 +10,6 @@ lemma contentsI: "y = {x} ==> contents y = x" unfolding contents_def by auto -lemma prod_case_split: "prod_case = split" - by (rule ext)+ auto - -lemmas split_split = prod.split [unfolded prod_case_split] -lemmas split_split_asm = prod.split_asm [unfolded prod_case_split] lemmas "split.splits" = split_split split_split_asm lemmas funpow_0 = funpow.simps(1) @@ -32,8 +27,6 @@ mod_alt :: "'a => 'a => 'a :: Divides.div" "mod_alt n m == n mod m" -declare iszero_0 [iff] - lemmas xtr1 = xtrans(1) lemmas xtr2 = xtrans(2) lemmas xtr3 = xtrans(3) @@ -71,10 +64,6 @@ apply (simp add: number_of_eq nat_diff_distrib [symmetric]) done -lemma of_int_power: - "of_int (a ^ n) = (of_int a ^ n :: 'a :: {recpower, comm_ring_1})" - by (induct n) (auto simp add: power_Suc) - lemma zless2: "0 < (2 :: int)" by auto