# HG changeset patch # User paulson # Date 1754667963 -3600 # Node ID dedd9d13c79cb3d078d1aa72a079cafc74f4840f # Parent b2b88d5b01b6b227efa12800ee36399535ec9528 Generalised a theorem about Lebesgue integration diff -r b2b88d5b01b6 -r dedd9d13c79c src/HOL/Analysis/Lebesgue_Integral_Substitution.thy --- a/src/HOL/Analysis/Lebesgue_Integral_Substitution.thy Thu Aug 07 22:42:21 2025 +0200 +++ b/src/HOL/Analysis/Lebesgue_Integral_Substitution.thy Fri Aug 08 16:46:03 2025 +0100 @@ -28,7 +28,7 @@ from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on) from this and contg' have Mg: "set_borel_measurable borel {a..b} g" and Mg': "set_borel_measurable borel {a..b} g'" - by (simp_all only: set_measurable_continuous_on_ivl) + using atLeastAtMost_borel set_measurable_continuous_on by blast+ from derivg have derivg': "\x. x \ {a..b} \ (g has_vector_derivative g' x) (at x)" by (simp only: has_real_derivative_iff_has_vector_derivative) @@ -329,7 +329,7 @@ from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on) with contg' have Mg: "set_borel_measurable borel {a..b} g" and Mg': "set_borel_measurable borel {a..b} g'" - by (simp_all only: set_measurable_continuous_on_ivl) + using atLeastAtMost_borel set_measurable_continuous_on by blast+ from derivg derivg_nonneg have monog: "\x y. a \ x \ x \ y \ y \ b \ g x \ g y" by (rule deriv_nonneg_imp_mono) simp_all diff -r b2b88d5b01b6 -r dedd9d13c79c src/HOL/Analysis/Set_Integral.thy --- a/src/HOL/Analysis/Set_Integral.thy Thu Aug 07 22:42:21 2025 +0200 +++ b/src/HOL/Analysis/Set_Integral.thy Fri Aug 08 16:46:03 2025 +0100 @@ -608,11 +608,11 @@ translations "CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\x. f)" -lemma set_measurable_continuous_on_ivl: - assumes "continuous_on {a..b} (f :: real \ real)" - shows "set_borel_measurable borel {a..b} f" - unfolding set_borel_measurable_def - by (rule borel_measurable_continuous_on_indicator[OF _ assms]) simp +lemma set_measurable_continuous_on: + fixes f g :: "'a::topological_space \ 'b::real_normed_vector" + shows "A \ sets borel \ continuous_on A f \ set_borel_measurable borel A f" + by (meson borel_measurable_continuous_on_indicator + set_borel_measurable_def) section \NN Set Integrals\