# HG changeset patch # User wenzelm # Date 1434574879 -7200 # Node ID e0169291b31c23138a32f7a3078bfdd31e6dee84 # Parent 5e67a223a141e68b6522a354485b34d5fc23bfd6 tuned proofs -- slightly faster; diff -r 5e67a223a141 -r e0169291b31c src/HOL/GCD.thy --- a/src/HOL/GCD.thy Wed Jun 17 22:30:22 2015 +0200 +++ b/src/HOL/GCD.thy Wed Jun 17 23:01:19 2015 +0200 @@ -525,9 +525,10 @@ lemma finite_divisors_nat[simp]: assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}" proof- - have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite) + have "finite{d. d <= m}" + by (blast intro: bounded_nat_set_is_finite) from finite_subset[OF _ this] show ?thesis using assms - by(bestsimp intro!:dvd_imp_le) + by (metis Collect_mono dvd_imp_le neq0_conv) qed lemma finite_divisors_int[simp]: @@ -536,7 +537,7 @@ have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if) hence "finite{d. abs d <= abs i}" by simp from finite_subset[OF _ this] show ?thesis using assms - by(bestsimp intro!:dvd_imp_le_int) + by (simp add: dvd_imp_le_int subset_iff) qed lemma Max_divisors_self_nat[simp]: "n\0 \ Max{d::nat. d dvd n} = n"