# HG changeset patch # User nipkow # Date 1383411028 -3600 # Node ID e039a9b9700def80c11ef3b8759d222a05152847 # Parent 2975658d49cd1395ba94c015ef8d357813c826e3 more exercises diff -r 2975658d49cd -r e039a9b9700d src/Doc/ProgProve/Isar.thy --- a/src/Doc/ProgProve/Isar.thy Sat Nov 02 17:19:34 2013 +0100 +++ b/src/Doc/ProgProve/Isar.thy Sat Nov 02 17:50:28 2013 +0100 @@ -1079,9 +1079,21 @@ \subsection{Exercises} + +\exercise +Give a structured proof of @{prop "ev(Suc(Suc n)) \ ev n"} +by rule inversion: +*} + +lemma assumes a: "ev(Suc(Suc n))" shows "ev n" +(*<*)oops(*>*) + +text{* +\endexercise + \begin{exercise} -Give a structured proof of @{prop "\ ev(Suc(Suc(Suc 0)))"}. -Rule inversion is sufficient. If there are no cases to be proved you can close +Give a structured proof of @{prop "\ ev(Suc(Suc(Suc 0)))"} +by rule inversions. If there are no cases to be proved you can close a proof immediateley with \isacom{qed}. \end{exercise}