# HG changeset patch # User huffman # Date 1266950245 28800 # Node ID e0b46cd724143fce44a2902fb33bf0c89f7e6164 # Parent 523124691b3a08d1fd5a862a67d1fc00e4303410 moved some lemmas from RealPow to RealDef; changed orientation of real_of_int_power diff -r 523124691b3a -r e0b46cd72414 src/HOL/Import/HOL/prob_extra.imp --- a/src/HOL/Import/HOL/prob_extra.imp Tue Feb 23 07:45:54 2010 -0800 +++ b/src/HOL/Import/HOL/prob_extra.imp Tue Feb 23 10:37:25 2010 -0800 @@ -22,7 +22,7 @@ "REAL_SUP_MAX" > "HOL4Prob.prob_extra.REAL_SUP_MAX" "REAL_SUP_LE_X" > "HOL4Prob.prob_extra.REAL_SUP_LE_X" "REAL_SUP_EXISTS_UNIQUE" > "HOL4Prob.prob_extra.REAL_SUP_EXISTS_UNIQUE" - "REAL_POW" > "RealPow.realpow_real_of_nat" + "REAL_POW" > "RealDef.power_real_of_nat" "REAL_LE_INV_LE" > "Rings.le_imp_inverse_le" "REAL_LE_EQ" > "Set.basic_trans_rules_26" "REAL_INVINV_ALL" > "Rings.inverse_inverse_eq" diff -r 523124691b3a -r e0b46cd72414 src/HOL/Import/HOL/real.imp --- a/src/HOL/Import/HOL/real.imp Tue Feb 23 07:45:54 2010 -0800 +++ b/src/HOL/Import/HOL/real.imp Tue Feb 23 10:37:25 2010 -0800 @@ -105,7 +105,7 @@ "REAL_POASQ" > "HOL4Real.real.REAL_POASQ" "REAL_OVER1" > "Rings.divide_1" "REAL_OF_NUM_SUC" > "RealDef.real_of_nat_Suc" - "REAL_OF_NUM_POW" > "RealPow.realpow_real_of_nat" + "REAL_OF_NUM_POW" > "RealDef.power_real_of_nat" "REAL_OF_NUM_MUL" > "RealDef.real_of_nat_mult" "REAL_OF_NUM_LE" > "RealDef.real_of_nat_le_iff" "REAL_OF_NUM_EQ" > "RealDef.real_of_nat_inject" diff -r 523124691b3a -r e0b46cd72414 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Tue Feb 23 07:45:54 2010 -0800 +++ b/src/HOL/Library/Float.thy Tue Feb 23 10:37:25 2010 -0800 @@ -789,12 +789,12 @@ hence "real x / real y < 1" using `0 < y` and `0 \ x` by auto from real_of_int_div4[of "?X" y] - have "real (?X div y) \ (real x / real y) * 2^?l" unfolding real_of_int_mult times_divide_eq_left real_of_int_power[symmetric] real_number_of . + have "real (?X div y) \ (real x / real y) * 2^?l" unfolding real_of_int_mult times_divide_eq_left real_of_int_power real_number_of . also have "\ < 1 * 2^?l" using `real x / real y < 1` by (rule mult_strict_right_mono, auto) finally have "?X div y < 2^?l" unfolding real_of_int_less_iff[of _ "2^?l", symmetric] by auto hence "?X div y + 1 \ 2^?l" by auto hence "real (?X div y + 1) * inverse (2^?l) \ 2^?l * inverse (2^?l)" - unfolding real_of_int_le_iff[of _ "2^?l", symmetric] real_of_int_power[symmetric] real_number_of + unfolding real_of_int_le_iff[of _ "2^?l", symmetric] real_of_int_power real_number_of by (rule mult_right_mono, auto) hence "real (?X div y + 1) * inverse (2^?l) \ 1" by auto thus ?thesis unfolding rapprox_posrat_def Let_def normfloat real_of_float_simp if_not_P[OF False] @@ -863,12 +863,12 @@ qed from real_of_int_div4[of "?X" y] - have "real (?X div y) \ (real x / real y) * 2^?l" unfolding real_of_int_mult times_divide_eq_left real_of_int_power[symmetric] real_number_of . + have "real (?X div y) \ (real x / real y) * 2^?l" unfolding real_of_int_mult times_divide_eq_left real_of_int_power real_number_of . also have "\ < 1/2 * 2^?l" using `real x / real y < 1/2` by (rule mult_strict_right_mono, auto) finally have "?X div y * 2 < 2^?l" unfolding real_of_int_less_iff[of _ "2^?l", symmetric] by auto hence "?X div y + 1 < 2^?l" using `0 < ?X div y` by auto hence "real (?X div y + 1) * inverse (2^?l) < 2^?l * inverse (2^?l)" - unfolding real_of_int_less_iff[of _ "2^?l", symmetric] real_of_int_power[symmetric] real_number_of + unfolding real_of_int_less_iff[of _ "2^?l", symmetric] real_of_int_power real_number_of by (rule mult_strict_right_mono, auto) hence "real (?X div y + 1) * inverse (2^?l) < 1" by auto thus ?thesis unfolding rapprox_posrat_def Let_def normfloat real_of_float_simp if_not_P[OF False] @@ -1188,7 +1188,7 @@ show "?thesis" proof (cases "0 < ?d") case True - hence pow_d: "pow2 ?d = real ?p" unfolding pow2_int[symmetric] power_real_number_of[symmetric] by auto + hence pow_d: "pow2 ?d = real ?p" using pow2_int[symmetric] by simp show ?thesis proof (cases "m mod ?p = 0") case True @@ -1224,7 +1224,7 @@ show "?thesis" proof (cases "0 < ?d") case True - hence pow_d: "pow2 ?d = real ?p" unfolding pow2_int[symmetric] power_real_number_of[symmetric] by auto + hence pow_d: "pow2 ?d = real ?p" using pow2_int[symmetric] by simp have "m div ?p * ?p \ m div ?p * ?p + m mod ?p" by (auto simp add: pos_mod_bound[OF `0 < ?p`, THEN less_imp_le]) also have "\ \ m" unfolding zdiv_zmod_equality2[where k=0, unfolded monoid_add_class.add_0_right] .. finally have "real (Float (m div ?p) (e + ?d)) \ real (Float m e)" unfolding real_of_float_simp add_commute[of e] @@ -1263,7 +1263,7 @@ case True have "real (m div 2^(nat ?l)) * pow2 ?l \ real m" proof - - have "real (m div 2^(nat ?l)) * pow2 ?l = real (2^(nat ?l) * (m div 2^(nat ?l)))" unfolding real_of_int_mult real_of_int_power[symmetric] real_number_of unfolding pow2_int[symmetric] + have "real (m div 2^(nat ?l)) * pow2 ?l = real (2^(nat ?l) * (m div 2^(nat ?l)))" unfolding real_of_int_mult real_of_int_power real_number_of unfolding pow2_int[symmetric] using `?l > 0` by auto also have "\ \ real (2^(nat ?l) * (m div 2^(nat ?l)) + m mod 2^(nat ?l))" unfolding real_of_int_add by auto also have "\ = real m" unfolding zmod_zdiv_equality[symmetric] .. @@ -1329,7 +1329,7 @@ hence me_eq: "pow2 (-e) = pow2 (int (nat (-e)))" by auto have "real (Float (m div (2 ^ (nat (-e)))) 0) = real (m div 2 ^ (nat (-e)))" unfolding real_of_float_simp by auto also have "\ \ real m / real ((2::int) ^ (nat (-e)))" using real_of_int_div4 . - also have "\ = real m * inverse (2 ^ (nat (-e)))" unfolding power_real_number_of[symmetric] real_divide_def .. + also have "\ = real m * inverse (2 ^ (nat (-e)))" unfolding real_of_int_power real_number_of real_divide_def .. also have "\ = real (Float m e)" unfolding real_of_float_simp me_eq pow2_int pow2_neg[of e] .. finally show ?thesis unfolding Float floor_fl.simps if_not_P[OF `\ 0 \ e`] . next @@ -1357,7 +1357,7 @@ case False hence me_eq: "pow2 (-e) = pow2 (int (nat (-e)))" by auto have "real (Float m e) = real m * inverse (2 ^ (nat (-e)))" unfolding real_of_float_simp me_eq pow2_int pow2_neg[of e] .. - also have "\ = real m / real ((2::int) ^ (nat (-e)))" unfolding power_real_number_of[symmetric] real_divide_def .. + also have "\ = real m / real ((2::int) ^ (nat (-e)))" unfolding real_of_int_power real_number_of real_divide_def .. also have "\ \ 1 + real (m div 2 ^ (nat (-e)))" using real_of_int_div3[unfolded diff_le_eq] . also have "\ = real (Float (m div (2 ^ (nat (-e))) + 1) 0)" unfolding real_of_float_simp by auto finally show ?thesis unfolding Float ceiling_fl.simps if_not_P[OF `\ 0 \ e`] . diff -r 523124691b3a -r e0b46cd72414 src/HOL/RealDef.thy --- a/src/HOL/RealDef.thy Tue Feb 23 07:45:54 2010 -0800 +++ b/src/HOL/RealDef.thy Tue Feb 23 10:37:25 2010 -0800 @@ -584,6 +584,11 @@ lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y" by (simp add: real_of_int_def) +lemma real_of_int_power [simp]: "real (x ^ n) = real (x::int) ^ n" +by (simp add: real_of_int_def of_int_power) + +lemmas power_real_of_int = real_of_int_power [symmetric] + lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))" apply (subst real_eq_of_int)+ apply (rule of_int_setsum) @@ -731,6 +736,11 @@ lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n" by (simp add: real_of_nat_def of_nat_mult) +lemma real_of_nat_power [simp]: "real (m ^ n) = real (m::nat) ^ n" +by (simp add: real_of_nat_def of_nat_power) + +lemmas power_real_of_nat = real_of_nat_power [symmetric] + lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) = (SUM x:A. real(f x))" apply (subst real_eq_of_nat)+ diff -r 523124691b3a -r e0b46cd72414 src/HOL/RealPow.thy --- a/src/HOL/RealPow.thy Tue Feb 23 07:45:54 2010 -0800 +++ b/src/HOL/RealPow.thy Tue Feb 23 10:37:25 2010 -0800 @@ -49,11 +49,6 @@ apply auto done -lemma realpow_real_of_nat: "real (m::nat) ^ n = real (m ^ n)" -apply (induct "n") -apply (auto simp add: real_of_nat_one real_of_nat_mult) -done - lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)" apply (induct "n") apply (auto simp add: zero_less_mult_iff) @@ -65,21 +60,6 @@ by (rule power_le_imp_le_base) -subsection{*Literal Arithmetic Involving Powers, Type @{typ real}*} - -lemma real_of_int_power: "real (x::int) ^ n = real (x ^ n)" -apply (induct "n") -apply (simp_all add: nat_mult_distrib) -done -declare real_of_int_power [symmetric, simp] - -lemma power_real_number_of: - "(number_of v :: real) ^ n = real ((number_of v :: int) ^ n)" -by (simp only: real_number_of [symmetric] real_of_int_power) - -declare power_real_number_of [of _ "number_of w", standard, simp] - - subsection{* Squares of Reals *} lemma real_two_squares_add_zero_iff [simp]: