# HG changeset patch # User paulson # Date 1528730601 -3600 # Node ID e0b5f2d14bf9315769caf461a55ddd51803de6fe # Parent 32f445237d36eb3cd616c23bded35c9c002fd89c fixed a name clash diff -r 32f445237d36 -r e0b5f2d14bf9 src/HOL/Analysis/Infinite_Products.thy --- a/src/HOL/Analysis/Infinite_Products.thy Mon Jun 11 15:53:22 2018 +0100 +++ b/src/HOL/Analysis/Infinite_Products.thy Mon Jun 11 16:23:21 2018 +0100 @@ -1431,7 +1431,7 @@ subsection\Embeddings from the reals into some complete real normed field\ -lemma tendsto_of_real: +lemma tendsto_eq_of_real_lim: assumes "(\n. of_real (f n) :: 'a::{complete_space,real_normed_field}) \ q" shows "q = of_real (lim f)" proof - @@ -1444,10 +1444,10 @@ by (metis LIMSEQ_unique assms convergentD sequentially_bot tendsto_Lim tendsto_of_real) qed -lemma tendsto_of_real': +lemma tendsto_eq_of_real: assumes "(\n. of_real (f n) :: 'a::{complete_space,real_normed_field}) \ q" obtains r where "q = of_real r" - using tendsto_of_real assms by blast + using tendsto_eq_of_real_lim assms by blast lemma has_prod_of_real_iff: "(\n. of_real (f n) :: 'a::{complete_space,real_normed_field}) has_prod of_real c \ f has_prod c" @@ -1456,7 +1456,7 @@ assume ?lhs then show ?rhs apply (auto simp: prod_defs LIMSEQ_prod_0 tendsto_of_real_iff simp flip: of_real_prod) - using tendsto_of_real' + using tendsto_eq_of_real by (metis of_real_0 tendsto_of_real_iff) next assume ?rhs