# HG changeset patch # User ballarin # Date 1229681349 -3600 # Node ID e190bc2a53992f4e23431e9d4024e2d4b5a0a8f0 # Parent 3adc06d6504f2ef6fba41e309d06293cef2757aa More porting to new locales diff -r 3adc06d6504f -r e190bc2a5399 src/HOL/Algebra/IntRing.thy --- a/src/HOL/Algebra/IntRing.thy Thu Dec 18 20:19:49 2008 +0100 +++ b/src/HOL/Algebra/IntRing.thy Fri Dec 19 11:09:09 2008 +0100 @@ -328,7 +328,7 @@ next assume "UNIV = {uu. EX x. uu = x * p}" from this obtain x - where "1 = x * p" by fast + where "1 = x * p" by best from this [symmetric] have "p * x = 1" by (subst zmult_commute) hence "\p * x\ = 1" by simp diff -r 3adc06d6504f -r e190bc2a5399 src/HOL/Algebra/Lattice.thy --- a/src/HOL/Algebra/Lattice.thy Thu Dec 18 20:19:49 2008 +0100 +++ b/src/HOL/Algebra/Lattice.thy Fri Dec 19 11:09:09 2008 +0100 @@ -919,7 +919,7 @@ text {* Total orders are lattices. *} -sublocale weak_total_order < weak_lattice +sublocale weak_total_order < weak: weak_lattice proof fix x y assume L: "x \ carrier L" "y \ carrier L" @@ -1125,14 +1125,14 @@ assumes sup_of_two_exists: "[| x \ carrier L; y \ carrier L |] ==> EX s. least L s (Upper L {x, y})" -sublocale upper_semilattice < weak_upper_semilattice +sublocale upper_semilattice < weak: weak_upper_semilattice proof qed (rule sup_of_two_exists) locale lower_semilattice = partial_order + assumes inf_of_two_exists: "[| x \ carrier L; y \ carrier L |] ==> EX s. greatest L s (Lower L {x, y})" -sublocale lower_semilattice < weak_lower_semilattice +sublocale lower_semilattice < weak: weak_lower_semilattice proof qed (rule inf_of_two_exists) locale lattice = upper_semilattice + lower_semilattice @@ -1183,7 +1183,7 @@ locale total_order = partial_order + assumes total_order_total: "[| x \ carrier L; y \ carrier L |] ==> x \ y | y \ x" -sublocale total_order < weak_total_order +sublocale total_order < weak: weak_total_order proof qed (rule total_order_total) text {* Introduction rule: the usual definition of total order *} @@ -1195,7 +1195,7 @@ text {* Total orders are lattices. *} -sublocale total_order < lattice +sublocale total_order < weak: lattice proof qed (auto intro: sup_of_two_exists inf_of_two_exists) @@ -1207,7 +1207,7 @@ and inf_exists: "[| A \ carrier L |] ==> EX i. greatest L i (Lower L A)" -sublocale complete_lattice < weak_complete_lattice +sublocale complete_lattice < weak: weak_complete_lattice proof qed (auto intro: sup_exists inf_exists) text {* Introduction rule: the usual definition of complete lattice *} diff -r 3adc06d6504f -r e190bc2a5399 src/HOL/Algebra/QuotRing.thy --- a/src/HOL/Algebra/QuotRing.thy Thu Dec 18 20:19:49 2008 +0100 +++ b/src/HOL/Algebra/QuotRing.thy Fri Dec 19 11:09:09 2008 +0100 @@ -175,9 +175,9 @@ interpret cring R by fact show ?thesis apply (rule ring_hom_cringI) apply (rule rcos_ring_hom_ring) - apply (rule R.is_cring) + apply (rule is_cring) apply (rule quotient_is_cring) -apply (rule R.is_cring) +apply (rule is_cring) done qed