# HG changeset patch # User nipkow # Date 1213272641 -7200 # Node ID e1c49eb8cee691745d7a27580a97cf5154d7d35a # Parent 81632fd4ff610a1a5e684b1faee30c8848843aa0 Hid swap diff -r 81632fd4ff61 -r e1c49eb8cee6 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Thu Jun 12 11:51:47 2008 +0200 +++ b/src/HOL/Finite_Set.thy Thu Jun 12 14:10:41 2008 +0200 @@ -535,7 +535,7 @@ have nSuc: "n = Suc m" by fact have mlessn: "m A" by (simp add: swap_def hkeq anot) show "insert (?hm m) A = ?hm ` {i. i < Suc m}" using aA hkeq nSuc klessn diff -r 81632fd4ff61 -r e1c49eb8cee6 src/HOL/Fun.thy --- a/src/HOL/Fun.thy Thu Jun 12 11:51:47 2008 +0200 +++ b/src/HOL/Fun.thy Thu Jun 12 14:10:41 2008 +0200 @@ -460,7 +460,7 @@ thus "inj_on f A" by simp next assume "inj_on f A" - with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) + with A show "inj_on (swap a b f) A" by(iprover intro: inj_on_imp_inj_on_swap) qed lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)" @@ -482,6 +482,7 @@ lemma bij_swap_iff: "bij (swap a b f) = bij f" by (simp add: bij_def) +hide const swap subsection {* Proof tool setup *}