# HG changeset patch # User paulson # Date 1676552064 0 # Node ID e20f5b9ad776211013a40184dad1a21f78ea9110 # Parent c6b50597abbcb5275da3fb952f4947481657620d Limit properties for complex exponential diff -r c6b50597abbc -r e20f5b9ad776 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Thu Feb 16 12:21:21 2023 +0000 +++ b/src/HOL/Complex.thy Thu Feb 16 12:54:24 2023 +0000 @@ -1001,6 +1001,21 @@ "continuous_on A f \ continuous_on A (\x. cis (f x))" by (auto simp: cis_conv_exp intro!: continuous_intros) +lemma tendsto_exp_0_Re_at_bot: "(exp \ 0) (filtercomap Re at_bot)" +proof - + have "((\z. cmod (exp z)) \ 0) (filtercomap Re at_bot)" + by (auto intro!: filterlim_filtercomapI exp_at_bot) + thus ?thesis + using tendsto_norm_zero_iff by blast +qed + +lemma filterlim_exp_at_infinity_Re_at_top: "filterlim exp at_infinity (filtercomap Re at_top)" +proof - + have "filterlim (\z. norm (exp z)) at_top (filtercomap Re at_top)" + by (auto intro!: filterlim_filtercomapI exp_at_top) + thus ?thesis + using filterlim_norm_at_top_imp_at_infinity by blast +qed subsubsection \Complex argument\