# HG changeset patch # User wenzelm # Date 1234811225 -3600 # Node ID e2756594c4144e19d45448588808c5438e3050f3 # Parent 3197b895f8585c54e7d80fbf95957d243ea83301 eliminated old 'axclass'; misc tuning and modernization; diff -r 3197b895f858 -r e2756594c414 src/FOL/ex/NatClass.thy --- a/src/FOL/ex/NatClass.thy Mon Feb 16 12:57:53 2009 +0100 +++ b/src/FOL/ex/NatClass.thy Mon Feb 16 20:07:05 2009 +0100 @@ -1,5 +1,4 @@ (* Title: FOL/ex/NatClass.thy - ID: $Id$ Author: Markus Wenzel, TU Muenchen *) @@ -16,75 +15,74 @@ because class axioms may not contain more than one type variable. *} -consts - 0 :: 'a ("0") - Suc :: "'a => 'a" - rec :: "['a, 'a, ['a, 'a] => 'a] => 'a" - -axclass - nat < "term" - induct: "[| P(0); !!x. P(x) ==> P(Suc(x)) |] ==> P(n)" - Suc_inject: "Suc(m) = Suc(n) ==> m = n" - Suc_neq_0: "Suc(m) = 0 ==> R" - rec_0: "rec(0, a, f) = a" - rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))" +class nat = + fixes Zero :: 'a ("0") + and Suc :: "'a => 'a" + and rec :: "'a \ 'a \ ('a \ 'a \ 'a) \ 'a" + assumes induct: "P(0) \ (\x. P(x) \ P(Suc(x))) \ P(n)" + and Suc_inject: "Suc(m) = Suc(n) \ m = n" + and Suc_neq_Zero: "Suc(m) = 0 \ R" + and rec_Zero: "rec(0, a, f) = a" + and rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))" +begin definition - add :: "['a::nat, 'a] => 'a" (infixl "+" 60) where - "m + n = rec(m, n, %x y. Suc(y))" + add :: "'a \ 'a \ 'a" (infixl "+" 60) where + "m + n = rec(m, n, \x y. Suc(y))" -lemma Suc_n_not_n: "Suc(k) ~= (k::'a::nat)" -apply (rule_tac n = k in induct) -apply (rule notI) -apply (erule Suc_neq_0) -apply (rule notI) -apply (erule notE) -apply (erule Suc_inject) -done +lemma Suc_n_not_n: "Suc(k) ~= (k::'a)" + apply (rule_tac n = k in induct) + apply (rule notI) + apply (erule Suc_neq_Zero) + apply (rule notI) + apply (erule notE) + apply (erule Suc_inject) + done -lemma "(k+m)+n = k+(m+n)" -apply (rule induct) -back -back -back -back -back -back -oops +lemma "(k + m) + n = k + (m + n)" + apply (rule induct) + back + back + back + back + back + oops -lemma add_0 [simp]: "0+n = n" -apply (unfold add_def) -apply (rule rec_0) -done +lemma add_Zero [simp]: "0 + n = n" + apply (unfold add_def) + apply (rule rec_Zero) + done -lemma add_Suc [simp]: "Suc(m)+n = Suc(m+n)" -apply (unfold add_def) -apply (rule rec_Suc) -done +lemma add_Suc [simp]: "Suc(m) + n = Suc(m + n)" + apply (unfold add_def) + apply (rule rec_Suc) + done -lemma add_assoc: "(k+m)+n = k+(m+n)" -apply (rule_tac n = k in induct) -apply simp -apply simp -done +lemma add_assoc: "(k + m) + n = k + (m + n)" + apply (rule_tac n = k in induct) + apply simp + apply simp + done -lemma add_0_right: "m+0 = m" -apply (rule_tac n = m in induct) -apply simp -apply simp -done +lemma add_Zero_right: "m + 0 = m" + apply (rule_tac n = m in induct) + apply simp + apply simp + done -lemma add_Suc_right: "m+Suc(n) = Suc(m+n)" -apply (rule_tac n = m in induct) -apply simp_all -done +lemma add_Suc_right: "m + Suc(n) = Suc(m + n)" + apply (rule_tac n = m in induct) + apply simp_all + done lemma - assumes prem: "!!n. f(Suc(n)) = Suc(f(n))" - shows "f(i+j) = i+f(j)" -apply (rule_tac n = i in induct) -apply simp -apply (simp add: prem) -done + assumes prem: "\n. f(Suc(n)) = Suc(f(n))" + shows "f(i + j) = i + f(j)" + apply (rule_tac n = i in induct) + apply simp + apply (simp add: prem) + done end + +end