# HG changeset patch # User haftmann # Date 1310656494 -7200 # Node ID e323be6b02a558a88e49fa3b7ab50b38b14e90b1 # Parent 2b094d17f432011b12fd1f80a65c70cec31fd08b tuned notation and proofs diff -r 2b094d17f432 -r e323be6b02a5 src/HOL/Complete_Lattice.thy --- a/src/HOL/Complete_Lattice.thy Thu Jul 14 15:14:38 2011 +0200 +++ b/src/HOL/Complete_Lattice.thy Thu Jul 14 17:14:54 2011 +0200 @@ -76,11 +76,11 @@ lemma Inf_binary: "\{a, b} = a \ b" - by (simp add: Inf_empty Inf_insert) + by (simp add: Inf_insert) lemma Sup_binary: "\{a, b} = a \ b" - by (simp add: Sup_empty Sup_insert) + by (simp add: Sup_insert) lemma le_Inf_iff: "b \ \A \ (\a\A. b \ a)" by (auto intro: Inf_greatest dest: Inf_lower) @@ -116,11 +116,11 @@ "x \ \ \ x = \" by (rule antisym) auto -lemma not_less_bot[simp]: "\ (x \ \)" - using bot_least[of x] by (auto simp: le_less) +lemma not_less_bot [simp]: "\ (x \ \)" + using bot_least [of x] by (auto simp: le_less) -lemma not_top_less[simp]: "\ (\ \ x)" - using top_greatest[of x] by (auto simp: le_less) +lemma not_top_less [simp]: "\ (\ \ x)" + using top_greatest [of x] by (auto simp: le_less) lemma Sup_upper2: "u \ A \ v \ u \ v \ \A" using Sup_upper[of u A] by auto @@ -838,25 +838,25 @@ lemma UN_simps [simp]: "\a B C. (\x\C. insert a (B x)) = (if C={} then {} else insert a (\x\C. B x))" - "\A B C. (\x\C. A x Un B) = ((if C={} then {} else (\x\C. A x) Un B))" - "\A B C. (\x\C. A Un B x) = ((if C={} then {} else A Un (\x\C. B x)))" - "\A B C. (\x\C. A x Int B) = ((\x\C. A x) Int B)" - "\A B C. (\x\C. A Int B x) = (A Int (\x\C. B x))" + "\A B C. (\x\C. A x \ B) = ((if C={} then {} else (\x\C. A x) \ B))" + "\A B C. (\x\C. A \ B x) = ((if C={} then {} else A \ (\x\C. B x)))" + "\A B C. (\x\C. A x \ B) = ((\x\C. A x) \B)" + "\A B C. (\x\C. A \ B x) = (A \(\x\C. B x))" "\A B C. (\x\C. A x - B) = ((\x\C. A x) - B)" "\A B C. (\x\C. A - B x) = (A - (\x\C. B x))" - "\A B. (UN x: \A. B x) = (UN y:A. UN x:y. B x)" - "\A B C. (UN z: UNION A B. C z) = (UN x:A. UN z: B(x). C z)" - "\A B f. (UN x:f`A. B x) = (UN a:A. B (f a))" + "\A B. (UN x: \A. B x) = (\y\A. UN x:y. B x)" + "\A B C. (UN z: UNION A B. C z) = (\x\A. UN z: B(x). C z)" + "\A B f. (\x\f`A. B x) = (\a\A. B (f a))" by auto lemma INT_simps [simp]: - "\A B C. (\x\C. A x Int B) = (if C={} then UNIV else (\x\C. A x) Int B)" - "\A B C. (\x\C. A Int B x) = (if C={} then UNIV else A Int (\x\C. B x))" + "\A B C. (\x\C. A x \ B) = (if C={} then UNIV else (\x\C. A x) \B)" + "\A B C. (\x\C. A \ B x) = (if C={} then UNIV else A \(\x\C. B x))" "\A B C. (\x\C. A x - B) = (if C={} then UNIV else (\x\C. A x) - B)" "\A B C. (\x\C. A - B x) = (if C={} then UNIV else A - (\x\C. B x))" "\a B C. (\x\C. insert a (B x)) = insert a (\x\C. B x)" - "\A B C. (\x\C. A x Un B) = ((\x\C. A x) Un B)" - "\A B C. (\x\C. A Un B x) = (A Un (\x\C. B x))" + "\A B C. (\x\C. A x \ B) = ((\x\C. A x) \ B)" + "\A B C. (\x\C. A \ B x) = (A \ (\x\C. B x))" "\A B. (INT x: \A. B x) = (\y\A. INT x:y. B x)" "\A B C. (INT z: UNION A B. C z) = (\x\A. INT z: B(x). C z)" "\A B f. (INT x:f`A. B x) = (INT a:A. B (f a))" @@ -867,13 +867,13 @@ "\A P Q. (\x\A. P | Q x) = (P | (\x\A. Q x))" "\A P Q. (\x\A. P --> Q x) = (P --> (\x\A. Q x))" "\A P Q. (\x\A. P x --> Q) = ((\x\A. P x) --> Q)" - "\P. (ALL x:{}. P x) = True" - "\P. (ALL x:UNIV. P x) = (ALL x. P x)" - "\a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))" - "\A P. (ALL x:\A. P x) = (ALL y:A. ALL x:y. P x)" - "\A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)" - "\P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)" - "\A P f. (ALL x:f`A. P x) = (\x\A. P (f x))" + "\P. (\ x\{}. P x) = True" + "\P. (\ x\UNIV. P x) = (ALL x. P x)" + "\a B P. (\ x\insert a B. P x) = (P a & (\ x\B. P x))" + "\A P. (\ x\\A. P x) = (\y\A. \ x\y. P x)" + "\A B P. (\ x\ UNION A B. P x) = (\a\A. \ x\ B a. P x)" + "\P Q. (\ x\Collect Q. P x) = (ALL x. Q x --> P x)" + "\A P f. (\ x\f`A. P x) = (\x\A. P (f x))" "\A P. (~(\x\A. P x)) = (\x\A. ~P x)" by auto @@ -894,25 +894,25 @@ lemma UN_extend_simps: "\a B C. insert a (\x\C. B x) = (if C={} then {a} else (\x\C. insert a (B x)))" - "\A B C. (\x\C. A x) Un B = (if C={} then B else (\x\C. A x Un B))" - "\A B C. A Un (\x\C. B x) = (if C={} then A else (\x\C. A Un B x))" - "\A B C. ((\x\C. A x) Int B) = (\x\C. A x Int B)" - "\A B C. (A Int (\x\C. B x)) = (\x\C. A Int B x)" + "\A B C. (\x\C. A x) \ B = (if C={} then B else (\x\C. A x \ B))" + "\A B C. A \ (\x\C. B x) = (if C={} then A else (\x\C. A \ B x))" + "\A B C. ((\x\C. A x) \B) = (\x\C. A x \ B)" + "\A B C. (A \(\x\C. B x)) = (\x\C. A \ B x)" "\A B C. ((\x\C. A x) - B) = (\x\C. A x - B)" "\A B C. (A - (\x\C. B x)) = (\x\C. A - B x)" - "\A B. (UN y:A. UN x:y. B x) = (UN x: \A. B x)" - "\A B C. (UN x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)" - "\A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)" + "\A B. (\y\A. UN x:y. B x) = (UN x: \A. B x)" + "\A B C. (\x\A. UN z: B(x). C z) = (UN z: UNION A B. C z)" + "\A B f. (\a\A. B (f a)) = (\x\f`A. B x)" by auto lemma INT_extend_simps: - "\A B C. (\x\C. A x) Int B = (if C={} then B else (\x\C. A x Int B))" - "\A B C. A Int (\x\C. B x) = (if C={} then A else (\x\C. A Int B x))" - "\A B C. (\x\C. A x) - B = (if C={} then UNIV-B else (\x\C. A x - B))" + "\A B C. (\x\C. A x) \B = (if C={} then B else (\x\C. A x \ B))" + "\A B C. A \(\x\C. B x) = (if C={} then A else (\x\C. A \ B x))" + "\A B C. (\x\C. A x) - B = (if C={} then UNIV - B else (\x\C. A x - B))" "\A B C. A - (\x\C. B x) = (if C={} then A else (\x\C. A - B x))" "\a B C. insert a (\x\C. B x) = (\x\C. insert a (B x))" - "\A B C. ((\x\C. A x) Un B) = (\x\C. A x Un B)" - "\A B C. A Un (\x\C. B x) = (\x\C. A Un B x)" + "\A B C. ((\x\C. A x) \ B) = (\x\C. A x \ B)" + "\A B C. A \ (\x\C. B x) = (\x\C. A \ B x)" "\A B. (\y\A. INT x:y. B x) = (INT x: \A. B x)" "\A B C. (\x\A. INT z: B(x). C z) = (INT z: UNION A B. C z)" "\A B f. (INT a:A. B (f a)) = (INT x:f`A. B x)"