# HG changeset patch # User nipkow # Date 1205521032 -3600 # Node ID e324f8918c9837adff73c6de81d083dfe1bd3553 # Parent 73ac6430f5e73bffdc36d3fda5bf9068e5bf1777 Added lemmas diff -r 73ac6430f5e7 -r e324f8918c98 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Fri Mar 14 12:18:56 2008 +0100 +++ b/src/HOL/IsaMakefile Fri Mar 14 19:57:12 2008 +0100 @@ -170,7 +170,7 @@ HOL-Complex: HOL $(OUT)/HOL-Complex $(OUT)/HOL-Complex: $(OUT)/HOL Complex/ROOT.ML $(SRC)/Tools/float.ML \ - Library/Zorn.thy \ + Library/Zorn.thy Library/Order_Relation.thy \ Real/ContNotDenum.thy Real/float_arith.ML Real/Float.thy \ Real/Lubs.thy Real/PReal.thy Real/RComplete.thy \ Real/Rational.thy Real/Real.thy Real/RealDef.thy Real/RealPow.thy \ diff -r 73ac6430f5e7 -r e324f8918c98 src/HOL/Relation.thy --- a/src/HOL/Relation.thy Fri Mar 14 12:18:56 2008 +0100 +++ b/src/HOL/Relation.thy Fri Mar 14 19:57:12 2008 +0100 @@ -82,245 +82,245 @@ subsection {* The identity relation *} lemma IdI [intro]: "(a, a) : Id" - by (simp add: Id_def) +by (simp add: Id_def) lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" - by (unfold Id_def) (iprover elim: CollectE) +by (unfold Id_def) (iprover elim: CollectE) lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" - by (unfold Id_def) blast +by (unfold Id_def) blast lemma reflexive_Id: "reflexive Id" - by (simp add: refl_def) +by (simp add: refl_def) lemma antisym_Id: "antisym Id" -- {* A strange result, since @{text Id} is also symmetric. *} - by (simp add: antisym_def) +by (simp add: antisym_def) lemma sym_Id: "sym Id" - by (simp add: sym_def) +by (simp add: sym_def) lemma trans_Id: "trans Id" - by (simp add: trans_def) +by (simp add: trans_def) subsection {* Diagonal: identity over a set *} lemma diag_empty [simp]: "diag {} = {}" - by (simp add: diag_def) +by (simp add: diag_def) lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" - by (simp add: diag_def) +by (simp add: diag_def) lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A" - by (rule diag_eqI) (rule refl) +by (rule diag_eqI) (rule refl) lemma diagE [elim!]: "c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" -- {* The general elimination rule. *} - by (unfold diag_def) (iprover elim!: UN_E singletonE) +by (unfold diag_def) (iprover elim!: UN_E singletonE) lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" - by blast +by blast lemma diag_subset_Times: "diag A \ A \ A" - by blast +by blast subsection {* Composition of two relations *} lemma rel_compI [intro]: "(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" - by (unfold rel_comp_def) blast +by (unfold rel_comp_def) blast lemma rel_compE [elim!]: "xz : r O s ==> (!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" - by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) +by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) lemma rel_compEpair: "(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" - by (iprover elim: rel_compE Pair_inject ssubst) +by (iprover elim: rel_compE Pair_inject ssubst) lemma R_O_Id [simp]: "R O Id = R" - by fast +by fast lemma Id_O_R [simp]: "Id O R = R" - by fast +by fast lemma rel_comp_empty1[simp]: "{} O R = {}" - by blast +by blast lemma rel_comp_empty2[simp]: "R O {} = {}" - by blast +by blast lemma O_assoc: "(R O S) O T = R O (S O T)" - by blast +by blast lemma trans_O_subset: "trans r ==> r O r \ r" - by (unfold trans_def) blast +by (unfold trans_def) blast lemma rel_comp_mono: "r' \ r ==> s' \ s ==> (r' O s') \ (r O s)" - by blast +by blast lemma rel_comp_subset_Sigma: "s \ A \ B ==> r \ B \ C ==> (r O s) \ A \ C" - by blast +by blast subsection {* Reflexivity *} lemma reflI: "r \ A \ A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" - by (unfold refl_def) (iprover intro!: ballI) +by (unfold refl_def) (iprover intro!: ballI) lemma reflD: "refl A r ==> a : A ==> (a, a) : r" - by (unfold refl_def) blast +by (unfold refl_def) blast lemma reflD1: "refl A r ==> (x, y) : r ==> x : A" - by (unfold refl_def) blast +by (unfold refl_def) blast lemma reflD2: "refl A r ==> (x, y) : r ==> y : A" - by (unfold refl_def) blast +by (unfold refl_def) blast lemma refl_Int: "refl A r ==> refl B s ==> refl (A \ B) (r \ s)" - by (unfold refl_def) blast +by (unfold refl_def) blast lemma refl_Un: "refl A r ==> refl B s ==> refl (A \ B) (r \ s)" - by (unfold refl_def) blast +by (unfold refl_def) blast lemma refl_INTER: "ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)" - by (unfold refl_def) fast +by (unfold refl_def) fast lemma refl_UNION: "ALL x:S. refl (A x) (r x) \ refl (UNION S A) (UNION S r)" - by (unfold refl_def) blast +by (unfold refl_def) blast lemma refl_diag: "refl A (diag A)" - by (rule reflI [OF diag_subset_Times diagI]) +by (rule reflI [OF diag_subset_Times diagI]) subsection {* Antisymmetry *} lemma antisymI: "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" - by (unfold antisym_def) iprover +by (unfold antisym_def) iprover lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" - by (unfold antisym_def) iprover +by (unfold antisym_def) iprover lemma antisym_subset: "r \ s ==> antisym s ==> antisym r" - by (unfold antisym_def) blast +by (unfold antisym_def) blast lemma antisym_empty [simp]: "antisym {}" - by (unfold antisym_def) blast +by (unfold antisym_def) blast lemma antisym_diag [simp]: "antisym (diag A)" - by (unfold antisym_def) blast +by (unfold antisym_def) blast subsection {* Symmetry *} lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" - by (unfold sym_def) iprover +by (unfold sym_def) iprover lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" - by (unfold sym_def, blast) +by (unfold sym_def, blast) lemma sym_Int: "sym r ==> sym s ==> sym (r \ s)" - by (fast intro: symI dest: symD) +by (fast intro: symI dest: symD) lemma sym_Un: "sym r ==> sym s ==> sym (r \ s)" - by (fast intro: symI dest: symD) +by (fast intro: symI dest: symD) lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" - by (fast intro: symI dest: symD) +by (fast intro: symI dest: symD) lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" - by (fast intro: symI dest: symD) +by (fast intro: symI dest: symD) lemma sym_diag [simp]: "sym (diag A)" - by (rule symI) clarify +by (rule symI) clarify subsection {* Transitivity *} lemma transI: "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" - by (unfold trans_def) iprover +by (unfold trans_def) iprover lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" - by (unfold trans_def) iprover +by (unfold trans_def) iprover lemma trans_Int: "trans r ==> trans s ==> trans (r \ s)" - by (fast intro: transI elim: transD) +by (fast intro: transI elim: transD) lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" - by (fast intro: transI elim: transD) +by (fast intro: transI elim: transD) lemma trans_diag [simp]: "trans (diag A)" - by (fast intro: transI elim: transD) +by (fast intro: transI elim: transD) subsection {* Converse *} lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)" - by (simp add: converse_def) +by (simp add: converse_def) lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1" - by (simp add: converse_def) +by (simp add: converse_def) lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r" - by (simp add: converse_def) +by (simp add: converse_def) lemma converseE [elim!]: "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} - by (unfold converse_def) (iprover elim!: CollectE splitE bexE) +by (unfold converse_def) (iprover elim!: CollectE splitE bexE) lemma converse_converse [simp]: "(r^-1)^-1 = r" - by (unfold converse_def) blast +by (unfold converse_def) blast lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" - by blast +by blast lemma converse_Int: "(r \ s)^-1 = r^-1 \ s^-1" - by blast +by blast lemma converse_Un: "(r \ s)^-1 = r^-1 \ s^-1" - by blast +by blast lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" - by fast +by fast lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" - by blast +by blast lemma converse_Id [simp]: "Id^-1 = Id" - by blast +by blast lemma converse_diag [simp]: "(diag A)^-1 = diag A" - by blast +by blast lemma refl_converse [simp]: "refl A (converse r) = refl A r" - by (unfold refl_def) auto +by (unfold refl_def) auto lemma sym_converse [simp]: "sym (converse r) = sym r" - by (unfold sym_def) blast +by (unfold sym_def) blast lemma antisym_converse [simp]: "antisym (converse r) = antisym r" - by (unfold antisym_def) blast +by (unfold antisym_def) blast lemma trans_converse [simp]: "trans (converse r) = trans r" - by (unfold trans_def) blast +by (unfold trans_def) blast lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" - by (unfold sym_def) fast +by (unfold sym_def) fast lemma sym_Un_converse: "sym (r \ r^-1)" - by (unfold sym_def) blast +by (unfold sym_def) blast lemma sym_Int_converse: "sym (r \ r^-1)" - by (unfold sym_def) blast +by (unfold sym_def) blast subsection {* Domain *} @@ -328,87 +328,110 @@ declare Domain_def [noatp] lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" - by (unfold Domain_def) blast +by (unfold Domain_def) blast lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" - by (iprover intro!: iffD2 [OF Domain_iff]) +by (iprover intro!: iffD2 [OF Domain_iff]) lemma DomainE [elim!]: "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" - by (iprover dest!: iffD1 [OF Domain_iff]) +by (iprover dest!: iffD1 [OF Domain_iff]) lemma Domain_empty [simp]: "Domain {} = {}" - by blast +by blast lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" - by blast +by blast lemma Domain_Id [simp]: "Domain Id = UNIV" - by blast +by blast lemma Domain_diag [simp]: "Domain (diag A) = A" - by blast +by blast lemma Domain_Un_eq: "Domain(A \ B) = Domain(A) \ Domain(B)" - by blast +by blast lemma Domain_Int_subset: "Domain(A \ B) \ Domain(A) \ Domain(B)" - by blast +by blast lemma Domain_Diff_subset: "Domain(A) - Domain(B) \ Domain(A - B)" - by blast +by blast lemma Domain_Union: "Domain (Union S) = (\A\S. Domain A)" - by blast +by blast + +lemma Domain_converse[simp]: "Domain(r^-1) = Range r" +by(auto simp:Range_def) lemma Domain_mono: "r \ s ==> Domain r \ Domain s" - by blast +by blast lemma fst_eq_Domain: "fst ` R = Domain R"; - apply auto - apply (rule image_eqI, auto) - done +by (auto intro!:image_eqI) subsection {* Range *} lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" - by (simp add: Domain_def Range_def) +by (simp add: Domain_def Range_def) lemma RangeI [intro]: "(a, b) : r ==> b : Range r" - by (unfold Range_def) (iprover intro!: converseI DomainI) +by (unfold Range_def) (iprover intro!: converseI DomainI) lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" - by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) +by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) lemma Range_empty [simp]: "Range {} = {}" - by blast +by blast lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" - by blast +by blast lemma Range_Id [simp]: "Range Id = UNIV" - by blast +by blast lemma Range_diag [simp]: "Range (diag A) = A" - by auto +by auto lemma Range_Un_eq: "Range(A \ B) = Range(A) \ Range(B)" - by blast +by blast lemma Range_Int_subset: "Range(A \ B) \ Range(A) \ Range(B)" - by blast +by blast lemma Range_Diff_subset: "Range(A) - Range(B) \ Range(A - B)" - by blast +by blast lemma Range_Union: "Range (Union S) = (\A\S. Range A)" - by blast +by blast + +lemma Range_converse[simp]: "Range(r^-1) = Domain r" +by blast lemma snd_eq_Range: "snd ` R = Range R"; - apply auto - apply (rule image_eqI, auto) - done +by (auto intro!:image_eqI) + + +subsection {* Field *} + +lemma mono_Field: "r \ s \ Field r \ Field s" +by(auto simp:Field_def Domain_def Range_def) + +lemma Field_empty[simp]: "Field {} = {}" +by(auto simp:Field_def) + +lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \ Field r" +by(auto simp:Field_def) + +lemma Field_Un[simp]: "Field (r \ s) = Field r \ Field s" +by(auto simp:Field_def) + +lemma Field_Union[simp]: "Field (\R) = \(Field ` R)" +by(auto simp:Field_def) + +lemma Field_converse[simp]: "Field(r^-1) = Field r" +by(auto simp:Field_def) subsection {* Image of a set under a relation *} @@ -416,62 +439,62 @@ declare Image_def [noatp] lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" - by (simp add: Image_def) +by (simp add: Image_def) lemma Image_singleton: "r``{a} = {b. (a, b) : r}" - by (simp add: Image_def) +by (simp add: Image_def) lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" - by (rule Image_iff [THEN trans]) simp +by (rule Image_iff [THEN trans]) simp lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A" - by (unfold Image_def) blast +by (unfold Image_def) blast lemma ImageE [elim!]: "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" - by (unfold Image_def) (iprover elim!: CollectE bexE) +by (unfold Image_def) (iprover elim!: CollectE bexE) lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" -- {* This version's more effective when we already have the required @{text a} *} - by blast +by blast lemma Image_empty [simp]: "R``{} = {}" - by blast +by blast lemma Image_Id [simp]: "Id `` A = A" - by blast +by blast lemma Image_diag [simp]: "diag A `` B = A \ B" - by blast +by blast lemma Image_Int_subset: "R `` (A \ B) \ R `` A \ R `` B" - by blast +by blast lemma Image_Int_eq: "single_valued (converse R) ==> R `` (A \ B) = R `` A \ R `` B" - by (simp add: single_valued_def, blast) +by (simp add: single_valued_def, blast) lemma Image_Un: "R `` (A \ B) = R `` A \ R `` B" - by blast +by blast lemma Un_Image: "(R \ S) `` A = R `` A \ S `` A" - by blast +by blast lemma Image_subset: "r \ A \ B ==> r``C \ B" - by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) +by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) lemma Image_eq_UN: "r``B = (\y\ B. r``{y})" -- {* NOT suitable for rewriting *} - by blast +by blast lemma Image_mono: "r' \ r ==> A' \ A ==> (r' `` A') \ (r `` A)" - by blast +by blast lemma Image_UN: "(r `` (UNION A B)) = (\x\A. r `` (B x))" - by blast +by blast lemma Image_INT_subset: "(r `` INTER A B) \ (\x\A. r `` (B x))" - by blast +by blast text{*Converse inclusion requires some assumptions*} lemma Image_INT_eq: @@ -482,50 +505,50 @@ done lemma Image_subset_eq: "(r``A \ B) = (A \ - ((r^-1) `` (-B)))" - by blast +by blast subsection {* Single valued relations *} lemma single_valuedI: "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" - by (unfold single_valued_def) +by (unfold single_valued_def) lemma single_valuedD: "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" - by (simp add: single_valued_def) +by (simp add: single_valued_def) lemma single_valued_rel_comp: "single_valued r ==> single_valued s ==> single_valued (r O s)" - by (unfold single_valued_def) blast +by (unfold single_valued_def) blast lemma single_valued_subset: "r \ s ==> single_valued s ==> single_valued r" - by (unfold single_valued_def) blast +by (unfold single_valued_def) blast lemma single_valued_Id [simp]: "single_valued Id" - by (unfold single_valued_def) blast +by (unfold single_valued_def) blast lemma single_valued_diag [simp]: "single_valued (diag A)" - by (unfold single_valued_def) blast +by (unfold single_valued_def) blast subsection {* Graphs given by @{text Collect} *} lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" - by auto +by auto lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" - by auto +by auto lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" - by auto +by auto subsection {* Inverse image *} lemma sym_inv_image: "sym r ==> sym (inv_image r f)" - by (unfold sym_def inv_image_def) blast +by (unfold sym_def inv_image_def) blast lemma trans_inv_image: "trans r ==> trans (inv_image r f)" apply (unfold trans_def inv_image_def) diff -r 73ac6430f5e7 -r e324f8918c98 src/HOL/Transitive_Closure.thy --- a/src/HOL/Transitive_Closure.thy Fri Mar 14 12:18:56 2008 +0100 +++ b/src/HOL/Transitive_Closure.thy Fri Mar 14 19:57:12 2008 +0100 @@ -63,6 +63,18 @@ reflcl ("(_\<^sup>=)" [1000] 999) +subsection {* Reflexive closure *} + +lemma reflexive_reflcl[simp]: "reflexive(r^=)" +by(simp add:refl_def) + +lemma antisym_reflcl[simp]: "antisym(r^=) = antisym r" +by(simp add:antisym_def) + +lemma trans_reflclI[simp]: "trans r \ trans(r^=)" +unfolding trans_def by blast + + subsection {* Reflexive-transitive closure *} lemma reflcl_set_eq [pred_set_conv]: "(sup (\x y. (x, y) \ r) op =) = (\x y. (x, y) \ r Un Id)" @@ -546,7 +558,7 @@ by (unfold Domain_def) (blast dest: tranclD) lemma trancl_range [simp]: "Range (r^+) = Range r" - by (simp add: Range_def trancl_converse [symmetric]) +unfolding Range_def by(simp add: trancl_converse [symmetric]) lemma Not_Domain_rtrancl: "x ~: Domain R ==> ((x, y) : R^*) = (x = y)"