# HG changeset patch # User desharna # Date 1665672349 -7200 # Node ID bed09d3ddc237992e060eef9a86557389e442405 # Parent 3158975d80e279700074e3bbb285ddabadcec80c# Parent e381884c09d4f47e5b7d28c1dd43361fe82abd1c merged diff -r e381884c09d4 -r bed09d3ddc23 NEWS --- a/NEWS Thu Oct 13 14:49:15 2022 +0200 +++ b/NEWS Thu Oct 13 16:45:49 2022 +0200 @@ -9,6 +9,10 @@ *** HOL *** +* Theory "HOL.Fun": + - Renamed lemma inj_on_strict_subset to image_strict_mono. + Minor INCOMPATIBILITY. + * Theory "HOL.Relation": - Strengthened lemma total_on_singleton. Minor INCOMPATIBILITY. - Added lemmas. @@ -33,7 +37,7 @@ * Theory "HOL-Library.FSet": - Added lemmas. fimage_strict_mono - inj_on_strict_fsubset + wfP_pfsubset New in Isabelle2022 (October 2022) diff -r e381884c09d4 -r bed09d3ddc23 src/HOL/BNF_Wellorder_Constructions.thy --- a/src/HOL/BNF_Wellorder_Constructions.thy Thu Oct 13 14:49:15 2022 +0200 +++ b/src/HOL/BNF_Wellorder_Constructions.thy Thu Oct 13 16:45:49 2022 +0200 @@ -708,7 +708,7 @@ moreover have "inj_on f23 ?A2" using EMB23 0 by (simp add: wo_rel_def embed_inj_on) ultimately - have "f23 ` (f12 ` ?A1) < f23 ` ?A2" by (simp add: inj_on_strict_subset) + have "f23 ` (f12 ` ?A1) < f23 ` ?A2" by (simp add: image_strict_mono) moreover {have "embed r1 r3 (f23 \ f12)" using 1 EMB23 0 by (auto simp add: comp_embed) diff -r e381884c09d4 -r bed09d3ddc23 src/HOL/Fun.thy --- a/src/HOL/Fun.thy Thu Oct 13 14:49:15 2022 +0200 +++ b/src/HOL/Fun.thy Thu Oct 13 16:45:49 2022 +0200 @@ -178,7 +178,7 @@ lemma inj_on_cong: "(\a. a \ A \ f a = g a) \ inj_on f A \ inj_on g A" by (auto simp: inj_on_def) -lemma inj_on_strict_subset: "inj_on f B \ A \ B \ f ` A \ f ` B" +lemma image_strict_mono: "inj_on f B \ A \ B \ f ` A \ f ` B" unfolding inj_on_def by blast lemma inj_compose: "inj f \ inj g \ inj (f \ g)" diff -r e381884c09d4 -r bed09d3ddc23 src/HOL/Library/FSet.thy --- a/src/HOL/Library/FSet.thy Thu Oct 13 14:49:15 2022 +0200 +++ b/src/HOL/Library/FSet.thy Thu Oct 13 16:45:49 2022 +0200 @@ -559,7 +559,7 @@ lemma fimage_strict_mono: assumes "inj_on f (fset B)" and "A |\| B" shows "f |`| A |\| f |`| B" - \ \TODO: Configure transfer framework to lift @{thm Fun.inj_on_strict_subset}.\ + \ \TODO: Configure transfer framework to lift @{thm Fun.image_strict_mono}.\ proof (rule pfsubsetI) from \A |\| B\ have "A |\| B" by (rule pfsubset_imp_fsubset)