# HG changeset patch # User blanchet # Date 1280849367 -7200 # Node ID e3bb14be0931198c567f9717577771af97fa2305 # Parent 747f8077b09ace1020826a451f2607db9b02267a updated example timings diff -r 747f8077b09a -r e3bb14be0931 doc-src/Nitpick/nitpick.tex --- a/doc-src/Nitpick/nitpick.tex Tue Aug 03 15:15:17 2010 +0200 +++ b/doc-src/Nitpick/nitpick.tex Tue Aug 03 17:29:27 2010 +0200 @@ -262,7 +262,7 @@ \hbox{}\qquad Free variables: \nopagebreak \\ \hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\ \hbox{}\qquad\qquad $x = a_3$ \\[2\smallskipamount] -Total time: 580 ms. +Total time: 768 ms. \postw Nitpick found a counterexample in which $'a$ has cardinality 3. (For @@ -818,8 +818,8 @@ \hbox{}\qquad \textit{card nat}~= 50. \\[2\smallskipamount] Nitpick found a potential counterexample for \textit{card nat}~= 50: \\[2\smallskipamount] \hbox{}\qquad Empty assignment \\[2\smallskipamount] -Nitpick could not find a better counterexample. It checked 1 of 1 scope. \\[2\smallskipamount] -Total time: 2274 ms. +Nitpick could not find a better counterexample. It checked 0 of 1 scope. \\[2\smallskipamount] +Total time: 1439 ms. \postw No genuine counterexample is possible because Nitpick cannot rule out the @@ -872,7 +872,7 @@ & 2 := \{0, 2, 4, 6, 8, 1^\Q, 3^\Q, 5^\Q, 7^\Q, 9^\Q\}, \\[-2pt] & 1 := \{0, 2, 4, 1^\Q, 3^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\}, \\[-2pt] & 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$ \\[2\smallskipamount] -Total time: 1140 ms. +Total time: 2420 ms. \postw Nitpick's output is very instructive. First, it tells us that the predicate is @@ -1034,7 +1034,7 @@ \hbox{}\qquad\qquad $\textit{b} = a_2$ \\ \hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$ \\ \hbox{}\qquad\qquad $\textit{ys} = \textit{LCons}~a_2~(\textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega)$ \\[2\smallskipamount] -Total time: 726 ms. +Total time: 1027 ms. \postw The lazy list $\textit{xs}$ is simply $[a_1, a_1, a_1, \ldots]$, whereas @@ -1182,7 +1182,7 @@ 4 := \textit{Var}~0,\> 5 := \textit{Var}~0)\end{aligned}$ \\ \hbox{}\qquad\qquad $t = \textit{Lam}~(\textit{Lam}~(\textit{Var}~1))$ \\[2\smallskipamount] -Total time: $4679$ ms. +Total time: $3560$ ms. \postw Using \textit{eval}, we find out that $\textit{subst}~\sigma~t = @@ -1200,7 +1200,7 @@ \prew \textbf{nitpick} [\textit{dont\_box}] \\[2\smallskipamount] -{\slshape Nitpick ran out of time after checking 4 of 10 scopes.} +{\slshape Nitpick ran out of time after checking 3 of 10 scopes.} \postw {\looseness=-1 @@ -1658,7 +1658,7 @@ ``$w \in A \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] + 1$'' \\ ``$w \in B \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] + 1$'' \\ \textbf{nitpick} \\[2\smallskipamount] -\slshape Nitpick ran out of time after checking 7 of 10 scopes. +\slshape Nitpick found no counterexample. \postw \subsection{AA Trees} @@ -1767,7 +1767,7 @@ ``$\textit{dataset}~(\textit{skew}~t) = \textit{dataset}~t$'' \\ ``$\textit{dataset}~(\textit{split}~t) = \textit{dataset}~t$'' \\ \textbf{nitpick} \\[2\smallskipamount] -{\slshape Nitpick ran out of time after checking 7 of 10 scopes.} +{\slshape Nitpick ran out of time after checking 9 of 10 scopes.} \postw Furthermore, applying \textit{skew} or \textit{split} to a well-formed tree @@ -1829,7 +1829,7 @@ \prew \textbf{theorem}~\textit{wf\_insort\/}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\ \textbf{nitpick} \\[2\smallskipamount] -{\slshape Nitpick ran out of time after checking 7 of 10 scopes.} +{\slshape Nitpick ran out of time after checking 8 of 10 scopes.} \postw Insertion should transform the set of elements represented by the tree in the @@ -1839,7 +1839,7 @@ \textbf{theorem} \textit{dataset\_insort\/}:\kern.4em ``$\textit{dataset}~(\textit{insort}~t~x) = \{x\} \cup \textit{dataset}~t$'' \\ \textbf{nitpick} \\[2\smallskipamount] -{\slshape Nitpick ran out of time after checking 6 of 10 scopes.} +{\slshape Nitpick ran out of time after checking 7 of 10 scopes.} \postw We could continue like this and sketch a complete theory of AA trees. Once the