# HG changeset patch # User kuncar # Date 1350568352 -7200 # Node ID e3f0a92de280ce0054be249d791b0a06954b4aca # Parent cde0a46b4224e4b08fa3e1598a846f394187e8dd tuned proofs diff -r cde0a46b4224 -r e3f0a92de280 src/HOL/Library/RBT_Set.thy --- a/src/HOL/Library/RBT_Set.thy Thu Oct 18 15:52:31 2012 +0200 +++ b/src/HOL/Library/RBT_Set.thy Thu Oct 18 15:52:32 2012 +0200 @@ -140,18 +140,14 @@ lemma [simp]: "x \ Some () \ x = None" by (auto simp: not_Some_eq[THEN iffD1]) +lemma Set_set_keys: "Set x = dom (lookup x)" +by (auto simp: Set_def) + lemma finite_Set [simp, intro!]: "finite (Set x)" -proof - - have "Set x = dom (lookup x)" by (auto simp: Set_def) - then show ?thesis by simp -qed +by (simp add: Set_set_keys) lemma set_keys: "Set t = set(keys t)" -proof - - have "\k. ((k, ()) \ set (entries t)) = (k \ set (keys t))" - by (simp add: keys_entries) - then show ?thesis by (auto simp: lookup_in_tree Set_def) -qed +by (simp add: Set_set_keys lookup_keys) subsection {* fold and filter *}