# HG changeset patch # User hoelzl # Date 1465481493 -7200 # Node ID e497387de7af484fcf5d7b7463c91c44b141cf3d # Parent 90a44d2716837bef7fb1579ca17ea8d8c138cc34 remove smt call in Lebesge_Measure diff -r 90a44d271683 -r e497387de7af src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy --- a/src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy Wed Jun 08 19:36:45 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy Thu Jun 09 16:11:33 2016 +0200 @@ -6289,13 +6289,13 @@ obtain B where B: "\x. B \ cmod x \ norm (f x) * 2 < cmod (f z)" by (auto simp: dist_norm) define R where "R = 1 + \B\ + norm z" - have "R > 0" unfolding R_def + have "R > 0" unfolding R_def proof - have "0 \ cmod z + \B\" by (metis (full_types) add_nonneg_nonneg norm_ge_zero real_norm_def) then show "0 < 1 + \B\ + cmod z" by linarith - qed + qed have *: "((\u. f u / (u - z)) has_contour_integral 2 * complex_of_real pi * \ * f z) (circlepath z R)" apply (rule Cauchy_integral_circlepath) using \R > 0\ apply (auto intro: holomorphic_on_subset [OF holf] holomorphic_on_imp_continuous_on)+ diff -r 90a44d271683 -r e497387de7af src/HOL/Probability/Lebesgue_Measure.thy --- a/src/HOL/Probability/Lebesgue_Measure.thy Wed Jun 08 19:36:45 2016 +0200 +++ b/src/HOL/Probability/Lebesgue_Measure.thy Thu Jun 09 16:11:33 2016 +0200 @@ -526,11 +526,12 @@ shows "emeasure lborel A = 0" proof - have "A \ (\i. {from_nat_into A i})" using from_nat_into_surj assms by force - moreover have "emeasure lborel (\i. {from_nat_into A i}) = 0" + then have "emeasure lborel A \ emeasure lborel (\i. {from_nat_into A i})" + by (intro emeasure_mono) auto + also have "emeasure lborel (\i. {from_nat_into A i}) = 0" by (rule emeasure_UN_eq_0) auto - ultimately have "emeasure lborel A \ 0" using emeasure_mono - by (smt UN_E emeasure_empty equalityI from_nat_into order_refl singletonD subsetI) - thus ?thesis by (auto simp add: ) + finally show ?thesis + by (auto simp add: ) qed lemma countable_imp_null_set_lborel: "countable A \ A \ null_sets lborel"