# HG changeset patch # User paulson # Date 1029938197 -7200 # Node ID e4b129eaa9c646d39bff6497d24bbef77cabeac7 # Parent 0a0f37f9c03121ffd2c687fe91b9bcff3a5d5d85 new proof needed now diff -r 0a0f37f9c031 -r e4b129eaa9c6 src/ZF/Constructible/Formula.thy --- a/src/ZF/Constructible/Formula.thy Wed Aug 21 15:55:59 2002 +0200 +++ b/src/ZF/Constructible/Formula.thy Wed Aug 21 15:56:37 2002 +0200 @@ -1008,7 +1008,8 @@ subsubsection{*For L to satisfy Powerset *} lemma LPow_env_typing: - "[| y : Lset(i); Ord(i); y \ X |] ==> y \ (\y\Pow(X). Lset(succ(lrank(y))))" + "[| y : Lset(i); Ord(i); y \ X |] + ==> \z \ Pow(X). y \ Lset(succ(lrank(z)))" by (auto intro: L_I iff: Lset_succ_lrank_iff) lemma LPow_in_Lset: @@ -1018,15 +1019,15 @@ apply (rule LsetI [OF succI1]) apply (simp add: DPow_def) apply (intro conjI, clarify) -apply (rule_tac a=x in UN_I, simp+) + apply (rule_tac a=x in UN_I, simp+) txt{*Now to create the formula @{term "y \ X"} *} apply (rule_tac x="Cons(X,Nil)" in bexI) apply (rule_tac x="subset_fm(0,1)" in bexI) apply typecheck -apply (rule conjI) + apply (rule conjI) apply (simp add: succ_Un_distrib [symmetric]) apply (rule equality_iffI) -apply (simp add: Transset_UN [OF Transset_Lset] list.Cons [OF LPow_env_typing]) +apply (simp add: Transset_UN [OF Transset_Lset] LPow_env_typing) apply (auto intro: L_I iff: Lset_succ_lrank_iff) done