# HG changeset patch # User nipkow # Date 1541948939 -3600 # Node ID e4d5a07fecb646a2ca0067c1032a1ec82a7ef0c1 # Parent b9dd40e2c47084bded0b2cdd35c2a694da1536cc tuned diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Abstract_Topology.thy Sun Nov 11 16:08:59 2018 +0100 @@ -1190,13 +1190,13 @@ assume *[rule_format]: "\U\topspace X'. openin X {x \ topspace X. f x \ U} = openin X' U" and U': "U' \ topspace X'" show "closedin X {x \ topspace X. f x \ U'} = closedin X' U'" - using U' by (auto simp add: closedin_def Diff_subset simp flip: * [of "topspace X' - U'"] eq [OF that]) + using U' by (auto simp add: closedin_def simp flip: * [of "topspace X' - U'"] eq [OF that]) next fix U' :: "'b set" assume *[rule_format]: "\U\topspace X'. closedin X {x \ topspace X. f x \ U} = closedin X' U" and U': "U' \ topspace X'" show "openin X {x \ topspace X. f x \ U'} = openin X' U'" - using U' by (auto simp add: openin_closedin_eq Diff_subset simp flip: * [of "topspace X' - U'"] eq [OF that]) + using U' by (auto simp add: openin_closedin_eq simp flip: * [of "topspace X' - U'"] eq [OF that]) qed then show ?thesis unfolding quotient_map_def by force @@ -1491,7 +1491,7 @@ lemma separatedin_closedin_diff: "\closedin X S; closedin X T\ \ separatedin X (S - T) (T - S)" - apply (simp add: separatedin_def Diff_Int_distrib2 Diff_subset closure_of_minimal inf_absorb2) + apply (simp add: separatedin_def Diff_Int_distrib2 closure_of_minimal inf_absorb2) apply (meson Diff_subset closedin_subset subset_trans) done diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Analysis/Brouwer_Fixpoint.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Brouwer_Fixpoint.thy Sun Nov 11 16:08:59 2018 +0100 @@ -1728,7 +1728,7 @@ have "f ` (A - {a}) = g ` (A - {a})" by (intro image_cong) (simp_all add: eq) then have "B - {f a} = B - {g a}" - using f g a by (auto simp: bij_betw_def inj_on_image_set_diff set_eq_iff Diff_subset) + using f g a by (auto simp: bij_betw_def inj_on_image_set_diff set_eq_iff) moreover have "f a \ B" "g a \ B" using f g a by (auto simp: bij_betw_def) ultimately show ?thesis @@ -1884,9 +1884,9 @@ moreover obtain a where "rl a = Suc n" "a \ s" by (metis atMost_iff image_iff le_Suc_eq rl) ultimately have n: "{..n} = rl ` (s - {a})" - by (auto simp: inj_on_image_set_diff Diff_subset rl) + by (auto simp: inj_on_image_set_diff rl) have "{a\s. rl ` (s - {a}) = {..n}} = {a}" - using inj_rl \a \ s\ by (auto simp: n inj_on_image_eq_iff[OF inj_rl] Diff_subset) + using inj_rl \a \ s\ by (auto simp: n inj_on_image_eq_iff[OF inj_rl]) then show "card ?S = 1" unfolding card_S by simp } @@ -1907,7 +1907,7 @@ { fix x assume "x \ s" "x \ {a, b}" then have "rl ` s - {rl x} = rl ` ((s - {a}) - {x})" - by (auto simp: eq Diff_subset inj_on_image_set_diff[OF inj]) + by (auto simp: eq inj_on_image_set_diff[OF inj]) also have "\ = rl ` (s - {x})" using ab \x \ {a, b}\ by auto also assume "\ = rl ` s" @@ -2448,7 +2448,7 @@ by auto finally have eq: "s - {a} = f' ` {.. n} - {f' n}" unfolding s_eq \a = enum i\ \i = 0\ - by (simp add: Diff_subset inj_on_image_set_diff[OF inj_enum] inj_on_image_set_diff[OF inj_f']) + by (simp add: inj_on_image_set_diff[OF inj_enum] inj_on_image_set_diff[OF inj_f']) have "enum 0 < f' 0" using \n \ 0\ by (simp add: enum_strict_mono f'_eq_enum) diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Sun Nov 11 16:08:59 2018 +0100 @@ -761,7 +761,7 @@ show ?rhs apply (rule_tac x="s \ t" in exI) using st - apply (auto simp: Diff_subset holomorphic_on_subset) + apply (auto simp: holomorphic_on_subset) done next assume ?rhs diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Continuous_Extension.thy --- a/src/HOL/Analysis/Continuous_Extension.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Continuous_Extension.thy Sun Nov 11 16:08:59 2018 +0100 @@ -36,7 +36,7 @@ have sd_pos: "0 < setdist {x} (S - V)" if "V \ \" "x \ S" "x \ V" for V x proof - have "closedin (subtopology euclidean S) (S - V)" - by (simp add: Diff_Diff_Int Diff_subset closedin_def opC openin_open_Int \V \ \\) + by (simp add: Diff_Diff_Int closedin_def opC openin_open_Int \V \ \\) with that False setdist_eq_0_closedin [of S "S-V" x] setdist_pos_le [of "{x}" "S - V"] show ?thesis by (simp add: order_class.order.order_iff_strict) diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy --- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Sun Nov 11 16:08:59 2018 +0100 @@ -1246,7 +1246,7 @@ case 1 show ?thesis by (rule negligible_subset [of "closure S"]) - (simp_all add: Diff_subset frontier_def negligible_lowdim 1) + (simp_all add: frontier_def negligible_lowdim 1) next case 2 obtain a where a: "a \ interior S" diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Measure_Space.thy --- a/src/HOL/Analysis/Measure_Space.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Measure_Space.thy Sun Nov 11 16:08:59 2018 +0100 @@ -1528,7 +1528,7 @@ show "a \ {A \ sets M. emeasure M A \ top} \ b \ {A \ sets M. emeasure M A \ top} \ a - b \ {A \ sets M. emeasure M A \ top}" for a b - using emeasure_mono[of "a - b" a M] by (auto simp: Diff_subset top_unique) + using emeasure_mono[of "a - b" a M] by (auto simp: top_unique) qed (auto dest: sets.sets_into_space) lemma measure_nonneg[simp]: "0 \ measure M A" @@ -1746,7 +1746,7 @@ finally show "a \ b \ fmeasurable M" using * by (auto intro: fmeasurableI) show "a - b \ fmeasurable M" - using emeasure_mono[of "a - b" a M] * by (auto simp: fmeasurable_def Diff_subset) + using emeasure_mono[of "a - b" a M] * by (auto simp: fmeasurable_def) qed subsection\Measurable sets formed by unions and intersections\ diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Starlike.thy Sun Nov 11 16:08:59 2018 +0100 @@ -5726,7 +5726,7 @@ shows "k \ Basis \ dim {x. k \ x = 0} = DIM('n) - 1" apply (simp add: special_hyperplane_span) apply (rule dim_unique [OF subset_refl]) -apply (auto simp: Diff_subset independent_substdbasis) +apply (auto simp: independent_substdbasis) apply (metis member_remove remove_def span_base) done @@ -6823,7 +6823,7 @@ using assms orthogonal_spanningset_subspace by blast then show ?thesis apply (rule_tac B = "B - {0}" in that) - apply (auto simp: indep_card_eq_dim_span pairwise_subset Diff_subset pairwise_orthogonal_independent elim: pairwise_subset) + apply (auto simp: indep_card_eq_dim_span pairwise_subset pairwise_orthogonal_independent elim: pairwise_subset) done qed @@ -7178,7 +7178,7 @@ have "closed S" by (simp add: \subspace S\ closed_subspace) then show "closure (S - U) \ S" - by (simp add: Diff_subset closure_minimal) + by (simp add: closure_minimal) show "S \ closure (S - U)" proof (clarsimp simp: closure_approachable) fix x and e::real @@ -7258,7 +7258,7 @@ shows "closure(S - T) = closure S" proof show "closure (S - T) \ closure S" - by (simp add: Diff_subset closure_mono) + by (simp add: closure_mono) have "closure (rel_interior S - T) = closure (rel_interior S)" apply (rule dense_complement_openin_affine_hull) apply (simp add: assms rel_interior_aff_dim) diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Analysis/Topology_Euclidean_Space.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Analysis/Topology_Euclidean_Space.thy Sun Nov 11 16:08:59 2018 +0100 @@ -794,7 +794,7 @@ by (meson openin_discrete_topology openin_subset openin_topspace order_refl subset_antisym) lemma closedin_discrete_topology [simp]: "closedin (discrete_topology U) S \ S \ U" - by (simp add: Diff_subset closedin_def) + by (simp add: closedin_def) lemma discrete_topology_unique: "discrete_topology U = X \ topspace X = U \ (\x \ U. openin X {x})" (is "?lhs = ?rhs") diff -r b9dd40e2c470 -r e4d5a07fecb6 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Sun Nov 11 14:34:02 2018 +0100 +++ b/src/HOL/Finite_Set.thy Sun Nov 11 16:08:59 2018 +0100 @@ -291,7 +291,7 @@ from B_A \x \ B\ have "B = f ` A - {x}" by blast with B_A \x \ B\ \x = f y\ \inj_on f A\ \y \ A\ have "B = f ` (A - {y})" - by (simp add: inj_on_image_set_diff Set.Diff_subset) + by (simp add: inj_on_image_set_diff) moreover from \inj_on f A\ have "inj_on f (A - {y})" by (rule inj_on_diff) ultimately have "finite (A - {y})"