# HG changeset patch # User obua # Date 1145782668 -7200 # Node ID e4f382a270ad0417af0ff6194c25f8d9f11a0d2f # Parent ef0ed2fe7bf2c15ae84b000d41cd172e116fcc66 added LP.thy diff -r ef0ed2fe7bf2 -r e4f382a270ad src/HOL/Matrix/LP.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Matrix/LP.thy Sun Apr 23 10:57:48 2006 +0200 @@ -0,0 +1,156 @@ +(* Title: HOL/Matrix/LP.thy + ID: $Id$ + Author: Steven Obua +*) + +theory LP +imports Main +begin + +lemma linprog_dual_estimate: + assumes + "A * x \ (b::'a::lordered_ring)" + "0 \ y" + "abs (A - A') \ \A" + "b \ b'" + "abs (c - c') \ \c" + "abs x \ r" + shows + "c * x \ y * b' + (y * \A + abs (y * A' - c') + \c) * r" +proof - + from prems have 1: "y * b <= y * b'" by (simp add: mult_left_mono) + from prems have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) + have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: ring_eq_simps) + from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp + have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)" + by (simp only: 4 estimate_by_abs) + have 6: "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <= abs (y * (A - A') + (y * A' - c') + (c'-c)) * abs x" + by (simp add: abs_le_mult) + have 7: "(abs (y * (A - A') + (y * A' - c') + (c'-c))) * abs x <= (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x" + by(rule abs_triangle_ineq [THEN mult_right_mono]) simp + have 8: " (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x <= (abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x" + by (simp add: abs_triangle_ineq mult_right_mono) + have 9: "(abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x" + by (simp add: abs_le_mult mult_right_mono) + have 10: "c'-c = -(c-c')" by (simp add: ring_eq_simps) + have 11: "abs (c'-c) = abs (c-c')" + by (subst 10, subst abs_minus_cancel, simp) + have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + \c) * abs x" + by (simp add: 11 prems mult_right_mono) + have 13: "(abs y * abs (A-A') + abs (y*A'-c') + \c) * abs x <= (abs y * \A + abs (y*A'-c') + \c) * abs x" + by (simp add: prems mult_right_mono mult_left_mono) + have r: "(abs y * \A + abs (y*A'-c') + \c) * abs x <= (abs y * \A + abs (y*A'-c') + \c) * r" + apply (rule mult_left_mono) + apply (simp add: prems) + apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+ + apply (rule mult_left_mono[of "0" "\A", simplified]) + apply (simp_all) + apply (rule order_trans[where y="abs (A-A')"], simp_all add: prems) + apply (rule order_trans[where y="abs (c-c')"], simp_all add: prems) + done + from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \A + abs (y*A'-c') + \c) * r" + by (simp) + show ?thesis + apply (rule_tac le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"]) + apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified prems]]) + done +qed + +lemma le_ge_imp_abs_diff_1: + assumes + "A1 <= (A::'a::lordered_ring)" + "A <= A2" + shows "abs (A-A1) <= A2-A1" +proof - + have "0 <= A - A1" + proof - + have 1: "A - A1 = A + (- A1)" by simp + show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified prems]) + qed + then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg) + with prems show "abs (A-A1) <= (A2-A1)" by simp +qed + +lemma mult_le_prts: + assumes + "a1 <= (a::'a::lordered_ring)" + "a <= a2" + "b1 <= b" + "b <= b2" + shows + "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" +proof - + have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" + apply (subst prts[symmetric])+ + apply simp + done + then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" + by (simp add: ring_eq_simps) + moreover have "pprt a * pprt b <= pprt a2 * pprt b2" + by (simp_all add: prems mult_mono) + moreover have "pprt a * nprt b <= pprt a1 * nprt b2" + proof - + have "pprt a * nprt b <= pprt a * nprt b2" + by (simp add: mult_left_mono prems) + moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" + by (simp add: mult_right_mono_neg prems) + ultimately show ?thesis + by simp + qed + moreover have "nprt a * pprt b <= nprt a2 * pprt b1" + proof - + have "nprt a * pprt b <= nprt a2 * pprt b" + by (simp add: mult_right_mono prems) + moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" + by (simp add: mult_left_mono_neg prems) + ultimately show ?thesis + by simp + qed + moreover have "nprt a * nprt b <= nprt a1 * nprt b1" + proof - + have "nprt a * nprt b <= nprt a * nprt b1" + by (simp add: mult_left_mono_neg prems) + moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" + by (simp add: mult_right_mono_neg prems) + ultimately show ?thesis + by simp + qed + ultimately show ?thesis + by - (rule add_mono | simp)+ +qed + +lemma mult_le_dual_prts: + assumes + "A * x \ (b::'a::lordered_ring)" + "0 \ y" + "A1 \ A" + "A \ A2" + "c1 \ c" + "c \ c2" + "r1 \ x" + "x \ r2" + shows + "c * x \ y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)" + (is "_ <= _ + ?C") +proof - + from prems have "y * (A * x) <= y * b" by (simp add: mult_left_mono) + moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: ring_eq_simps) + ultimately have "c * x + (y * A - c) * x <= y * b" by simp + then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq) + then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: ring_eq_simps) + have s2: "c - y * A <= c2 - y * A1" + by (simp add: diff_def prems add_mono mult_left_mono) + have s1: "c1 - y * A2 <= c - y * A" + by (simp add: diff_def prems add_mono mult_left_mono) + have prts: "(c - y * A) * x <= ?C" + apply (simp add: Let_def) + apply (rule mult_le_prts) + apply (simp_all add: prems s1 s2) + done + then have "y * b + (c - y * A) * x <= y * b + ?C" + by simp + with cx show ?thesis + by(simp only:) +qed + +end \ No newline at end of file