# HG changeset patch # User huffman # Date 1315085625 25200 # Node ID 42a2e1a4f04fdac01d44ddb5334c9c661ae4c941 # Parent b6d8b11ed399b8f574e8b5c02fce95bc3403d506# Parent e5ba1c0b8cac8eec430a58b1a5020284e91e361a merged diff -r e5ba1c0b8cac -r 42a2e1a4f04f src/HOL/Import/HOL4Compat.thy --- a/src/HOL/Import/HOL4Compat.thy Sat Sep 03 22:11:49 2011 +0200 +++ b/src/HOL/Import/HOL4Compat.thy Sat Sep 03 14:33:45 2011 -0700 @@ -421,16 +421,6 @@ assume allx': "ALL x. P x \ x < z" have "EX s. ALL y. (EX x : Collect P. y < x) = (y < s)" proof (rule posreal_complete) - show "ALL x : Collect P. 0 < x" - proof safe - fix x - assume P: "P x" - from allx - have "P x \ 0 < x" - .. - with P show "0 < x" by simp - qed - next from px show "EX x. x : Collect P" by auto diff -r e5ba1c0b8cac -r 42a2e1a4f04f src/HOL/RComplete.thy --- a/src/HOL/RComplete.thy Sat Sep 03 22:11:49 2011 +0200 +++ b/src/HOL/RComplete.thy Sat Sep 03 14:33:45 2011 -0700 @@ -33,8 +33,8 @@ text {* Only used in HOL/Import/HOL4Compat.thy; delete? *} lemma posreal_complete: - assumes positive_P: "\x \ P. (0::real) < x" - and not_empty_P: "\x. x \ P" + fixes P :: "real set" + assumes not_empty_P: "\x. x \ P" and upper_bound_Ex: "\y. \x \ P. xS. \y. (\x \ P. y < x) = (y < S)" proof -