# HG changeset patch # User desharna # Date 1671447656 -3600 # Node ID e65a50f6c2de22030947341855a9e5141b7ec04c # Parent e19a3dbbf5de67f8b2923053bd5b36edcb8e5ca4 added lemma refl_lex_prod[simp] diff -r e19a3dbbf5de -r e65a50f6c2de NEWS --- a/NEWS Mon Dec 19 12:00:15 2022 +0100 +++ b/NEWS Mon Dec 19 12:00:56 2022 +0100 @@ -124,6 +124,7 @@ asym_on_lex_prod[simp] irrefl_lex_prod[simp] irrefl_on_lex_prod[simp] + refl_lex_prod[simp] sym_lex_prod[simp] sym_on_lex_prod[simp] wfP_if_convertible_to_nat diff -r e19a3dbbf5de -r e65a50f6c2de src/HOL/Wellfounded.thy --- a/src/HOL/Wellfounded.thy Mon Dec 19 12:00:15 2022 +0100 +++ b/src/HOL/Wellfounded.thy Mon Dec 19 12:00:56 2022 +0100 @@ -849,6 +849,9 @@ by (simp add: zeq) qed auto +lemma refl_lex_prod[simp]: "refl r\<^sub>B \ refl (r\<^sub>A <*lex*> r\<^sub>B)" + by (auto intro!: reflI dest: refl_onD) + lemma irrefl_on_lex_prod[simp]: "irrefl_on A r\<^sub>A \ irrefl_on B r\<^sub>B \ irrefl_on (A \ B) (r\<^sub>A <*lex*> r\<^sub>B)" by (auto intro!: irrefl_onI dest: irrefl_onD)