# HG changeset patch # User paulson # Date 1094200025 -7200 # Node ID e7616269fdca84592c31a8e81b12b6a916b8abc4 # Parent 2fd60846f485b7642b6d9a051a1e684660288771 new theorem symD diff -r 2fd60846f485 -r e7616269fdca src/HOL/Relation.thy --- a/src/HOL/Relation.thy Fri Sep 03 10:26:39 2004 +0200 +++ b/src/HOL/Relation.thy Fri Sep 03 10:27:05 2004 +0200 @@ -162,7 +162,10 @@ by (unfold antisym_def) rules -subsection {* Transitivity *} +subsection {* Symmetry and Transitivity *} + +lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" + by (unfold sym_def, blast) lemma transI: "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"