# HG changeset patch # User paulson # Date 1094117346 -7200 # Node ID e7d4d3314f4c504b73d2f7697b5fd26f49228a59 # Parent 2b5da07a0b89ba241e057814e52affc22f8fdbd2 fixed presentation diff -r 2b5da07a0b89 -r e7d4d3314f4c src/HOL/Hyperreal/Star.thy --- a/src/HOL/Hyperreal/Star.thy Wed Sep 01 15:04:01 2004 +0200 +++ b/src/HOL/Hyperreal/Star.thy Thu Sep 02 11:29:06 2004 +0200 @@ -390,10 +390,9 @@ text{*Alternative definition for hrabs with rabs function applied entrywise to equivalence class representative. This is easily proved using starfun and ns extension thm*} -lemma hypreal_hrabs: "abs (Abs_hypreal (hyprel `` {X})) = - Abs_hypreal(hyprel `` {%n. abs (X n)})" -apply (simp (no_asm) add: starfun_rabs_hrabs [symmetric] starfun) -done +lemma hypreal_hrabs: + "abs (Abs_hypreal (hyprel``{X})) = Abs_hypreal(hyprel `` {%n. abs (X n)})" +by (simp add: starfun_rabs_hrabs [symmetric] starfun) text{*nonstandard extension of set through nonstandard extension of rabs function i.e hrabs. A more general result should be @@ -404,7 +403,10 @@ {x. abs(x + -hypreal_of_real y) < hypreal_of_real r}" apply (simp add: starset_def, safe) apply (rule_tac [!] z = x in eq_Abs_hypreal) -apply (auto intro!: exI dest!: bspec simp add: hypreal_minus hypreal_of_real_def hypreal_add hypreal_hrabs hypreal_less, ultra) +apply (auto intro!: exI dest!: bspec + simp add: hypreal_minus hypreal_of_real_def hypreal_add + hypreal_hrabs hypreal_less) +apply ultra done lemma STAR_starfun_rabs_add_minus: @@ -412,12 +414,15 @@ {x. abs(( *f* f) x + -hypreal_of_real y) < hypreal_of_real r}" apply (simp add: starset_def, safe) apply (rule_tac [!] z = x in eq_Abs_hypreal) -apply (auto intro!: exI dest!: bspec simp add: hypreal_minus hypreal_of_real_def hypreal_add hypreal_hrabs hypreal_less starfun, ultra) +apply (auto intro!: exI dest!: bspec + simp add: hypreal_minus hypreal_of_real_def hypreal_add + hypreal_hrabs hypreal_less starfun) +apply ultra done text{*Another characterization of Infinitesimal and one of @= relation. - In this theory since hypreal_hrabs proved here. (To Check:) Maybe - move both if possible?*} + In this theory since @{text hypreal_hrabs} proved here. Maybe + move both theorems??*} lemma Infinitesimal_FreeUltrafilterNat_iff2: "(x \ Infinitesimal) = (\X \ Rep_hypreal(x).