# HG changeset patch # User huffman # Date 1313097845 25200 # Node ID e81d676d598ec7247107a101a9ad0bca2b4e829a # Parent d12d89a66742b578db817d276c8b3ee3de33e159 avoid duplicate rule warnings diff -r d12d89a66742 -r e81d676d598e src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Thu Aug 11 13:05:56 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Thu Aug 11 14:24:05 2011 -0700 @@ -1635,11 +1635,8 @@ abbreviation dest_vec1:: "'a ^1 \ 'a" where "dest_vec1 x \ (x$1)" -lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" "dest_vec1(vec1 y) = y" - by (simp_all add: vec_eq_iff) - -lemma vec1_component[simp]: "(vec1 x)$1 = x" - by (simp_all add: vec_eq_iff) +lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" + by (simp add: vec_eq_iff) lemma forall_vec1: "(\x. P x) \ (\x. P (vec1 x))" by (metis vec1_dest_vec1(1)) @@ -1647,9 +1644,6 @@ lemma exists_vec1: "(\x. P x) \ (\x. P(vec1 x))" by (metis vec1_dest_vec1(1)) -lemma vec1_eq[simp]: "vec1 x = vec1 y \ x = y" - by (metis vec1_dest_vec1(2)) - lemma dest_vec1_eq[simp]: "dest_vec1 x = dest_vec1 y \ x = y" by (metis vec1_dest_vec1(1)) @@ -1741,12 +1735,12 @@ by (simp add: vec_def norm_real) lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)" - by (simp only: dist_real vec1_component) + by (simp only: dist_real vec_component) lemma abs_dest_vec1: "norm x = \dest_vec1 x\" by (metis vec1_dest_vec1(1) norm_vec1) lemmas vec1_dest_vec1_simps = forall_vec1 vec_add[THEN sym] dist_vec1 vec_sub[THEN sym] vec1_dest_vec1 norm_vec1 vector_smult_component - vec1_eq vec_cmul[THEN sym] smult_conv_scaleR[THEN sym] o_def dist_real_def real_norm_def + vec_inj[where 'b=1] vec_cmul[THEN sym] smult_conv_scaleR[THEN sym] o_def dist_real_def real_norm_def lemma bounded_linear_vec1:"bounded_linear (vec1::real\real^1)" unfolding bounded_linear_def additive_def bounded_linear_axioms_def diff -r d12d89a66742 -r e81d676d598e src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Thu Aug 11 13:05:56 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Thu Aug 11 14:24:05 2011 -0700 @@ -1146,9 +1146,6 @@ shows "suminf f = (\Ni. 0) = (0::'a::{comm_monoid_add,t2_space})" - using suminf_finite[of 0 "\x. 0"] by simp - lemma suminf_upper: fixes f :: "nat \ ereal" assumes "\n. 0 \ f n" shows "(\n (\n. f n)" diff -r d12d89a66742 -r e81d676d598e src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Thu Aug 11 13:05:56 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Thu Aug 11 14:24:05 2011 -0700 @@ -23,8 +23,6 @@ by(subst(asm) real_arch_inv) subsection {* Sundries *} -(*declare basis_component[simp]*) - lemma conjunctD2: assumes "a \ b" shows a b using assms by auto lemma conjunctD3: assumes "a \ b \ c" shows a b c using assms by auto lemma conjunctD4: assumes "a \ b \ c \ d" shows a b c d using assms by auto @@ -142,7 +140,7 @@ let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$$k = a$$k" have "ball ?z (e / 2) \ i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE) fix y assume "y \ ball ?z (e / 2) \ i" hence "dist ?z y < e/2" and yi:"y\i" by auto hence "\(?z - y) $$ k\ < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto - hence "y$$k < a$$k" using e[THEN conjunct1] k by(auto simp add:field_simps basis_component as) + hence "y$$k < a$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as) hence "y \ i" unfolding ab mem_interval not_all apply(rule_tac x=k in exI) using k by auto thus False using yi by auto qed moreover have "ball ?z (e/2) \ s \ (\insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof fix y assume as:"y\ ball ?z (e/2)" have "norm (x - y) \ \e\ / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)" @@ -417,10 +415,6 @@ fix k assume k:"k \ p1 \ p2" show "k \ s1 \ s2" using k d1(2) d2(2) by auto show "k \ {}" using k d1(3) d2(3) by auto show "\a b. k = {a..b}" using k d1(4) d2(4) by auto qed -(* move *) -lemma Eucl_nth_inverse[simp]: fixes x::"'a::euclidean_space" shows "(\\ i. x $$ i) = x" - apply(subst euclidean_eq) by auto - lemma partial_division_extend_1: assumes "{c..d} \ {a..b::'a::ordered_euclidean_space}" "{c..d} \ {}" obtains p where "p division_of {a..b}" "{c..d} \ p" @@ -737,7 +731,7 @@ "(s tagged_division_of i) \ (s tagged_partial_division_of i) \ (\{k. \x. (x,k) \ s} = i)" -lemma tagged_division_of_finite[dest]: "s tagged_division_of i \ finite s" +lemma tagged_division_of_finite: "s tagged_division_of i \ finite s" unfolding tagged_division_of_def tagged_partial_division_of_def by auto lemma tagged_division_of: diff -r d12d89a66742 -r e81d676d598e src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 11 13:05:56 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 11 14:24:05 2011 -0700 @@ -479,7 +479,7 @@ { fix e :: real assume "0 < e" def y \ "x + scaleR (e/2) (sgn (basis 0))" from `0 < e` have "y \ x" - unfolding y_def by (simp add: sgn_zero_iff basis_eq_0_iff DIM_positive) + unfolding y_def by (simp add: sgn_zero_iff DIM_positive) from `0 < e` have "dist y x < e" unfolding y_def by (simp add: dist_norm norm_sgn) from `y \ x` and `dist y x < e` @@ -5646,7 +5646,7 @@ lemma subspace_substandard: "subspace {x::'a::euclidean_space. (\i x$$i = 0)}" - unfolding subspace_def by(auto simp add: euclidean_simps) + unfolding subspace_def by(auto simp add: euclidean_simps) (* FIXME: duplicate rewrite rule *) lemma closed_substandard: "closed {x::'a::euclidean_space. \i x$$i = 0}" (is "closed ?A") @@ -5674,7 +5674,7 @@ let ?D = "{.. ?A" by(auto simp add:basis_component) + have "?B \ ?A" by auto moreover { fix x::"'a" assume "x\?A" hence "finite d" "x\?A" using assms by(auto intro:finite_subset) @@ -5690,7 +5690,7 @@ have y:"x = y + (x$$k) *\<^sub>R basis k" unfolding y_def by auto { fix i assume i':"i \ F" hence "y $$ i = 0" unfolding y_def - using *[THEN spec[where x=i]] by(auto simp add: euclidean_simps basis_component) } + using *[THEN spec[where x=i]] by(auto simp add: euclidean_simps) } hence "y \ span (basis ` F)" using insert(3) by auto hence "y \ span (basis ` (insert k F))" using span_mono[of "?bas ` F" "?bas ` (insert k F)"] @@ -6025,7 +6025,7 @@ have lima:"((fst \ (h \ r)) ---> a) sequentially" and limb:"((snd \ (h \ r)) ---> b) sequentially" using lr - unfolding o_def a_def b_def by (simp_all add: tendsto_intros) + unfolding o_def a_def b_def by (rule tendsto_intros)+ { fix n::nat have *:"\fx fy (x::'a) y. dist fx fy \ dist x y \ \ (dist (fx - fy) (a - b) < dist a b - dist x y)" unfolding dist_norm by norm