# HG changeset patch # User haftmann # Date 1224863313 -7200 # Node ID e8664643f54391cf5297a454565913675766c114 # Parent f1c76cf109158b9a95eb970b2d78c87a63b717ee subst is a proper axiom again diff -r f1c76cf10915 -r e8664643f543 src/FOL/IFOL.thy --- a/src/FOL/IFOL.thy Fri Oct 24 10:41:15 2008 +0200 +++ b/src/FOL/IFOL.thy Fri Oct 24 17:48:33 2008 +0200 @@ -101,6 +101,7 @@ (* Equality *) refl: "a=a" + subst: "a=b \ P(a) \ P(b)" (* Propositional logic *) @@ -125,7 +126,10 @@ exI: "P(x) ==> (EX x. P(x))" exE: "[| EX x. P(x); !!x. P(x) ==> R |] ==> R" - (* Reflection *) + +axioms + + (* Reflection, admissible *) eq_reflection: "(x=y) ==> (x==y)" iff_reflection: "(P<->Q) ==> (P==Q)" @@ -134,18 +138,6 @@ lemmas strip = impI allI -text{*Thanks to Stephan Merz*} -theorem subst: - assumes eq: "a = b" and p: "P(a)" - shows "P(b)" -proof - - from eq have meta: "a \ b" - by (rule eq_reflection) - from p show ?thesis - by (unfold meta) -qed - - defs (* Definitions *)