# HG changeset patch # User nipkow # Date 1542637932 -3600 # Node ID e8dea06456b4129dcf0626d267ff6b4b4253d03f # Parent fc1a8df3062de3325321438506da83a95892c001# Parent 248696d0a05f08ea74f2330bdc2e9ee40a32e057 merged diff -r fc1a8df3062d -r e8dea06456b4 NEWS --- a/NEWS Mon Nov 19 12:50:23 2018 +0100 +++ b/NEWS Mon Nov 19 15:32:12 2018 +0100 @@ -54,6 +54,8 @@ * Theory "HOL-Library.Multiset": the # operator now has the same precedence as any other prefix function symbol. +* Retired lemma card_Union_image; use the simpler card_UN_disjoint instead. + * Facts sum_mset.commute and prod_mset.commute renamed to sum_mset.swap and prod_mset.swap, similarly to sum.swap and prod.swap. INCOMPATIBILITY. diff -r fc1a8df3062d -r e8dea06456b4 src/HOL/Groups_Big.thy --- a/src/HOL/Groups_Big.thy Mon Nov 19 12:50:23 2018 +0100 +++ b/src/HOL/Groups_Big.thy Mon Nov 19 15:32:12 2018 +0100 @@ -1089,22 +1089,6 @@ qed qed simp -lemma card_Union_image: - assumes "finite S" - assumes "\s. s \ S \ finite (f s)" - assumes "pairwise (\s t. disjnt (f s) (f t)) S" - shows "card (\(f ` S)) = sum (\x. card (f x)) S" -proof - - have "pairwise disjnt (f ` S)" - using assms(3) - by (metis pairwiseD pairwise_imageI) - then have "card (\(f ` S)) = sum card (f ` S)" - by (subst card_Union_disjoint) (use assms in auto) - also have "... = sum (\x. card (f x)) S" - by (metis (mono_tags, lifting) assms(1) assms(3) sum_card_image) - finally show ?thesis . -qed - subsubsection \Cardinality of products\