# HG changeset patch # User bulwahn # Date 1508602499 -7200 # Node ID e92d48a42a01a663cf2e01c3a988eac13b4353e9 # Parent 7fe528893a6c79d70f6e17f6e201ba1125b316da drop a superfluous assumption that was found by the find_unused_assms command and tune proof diff -r 7fe528893a6c -r e92d48a42a01 src/HOL/List.thy --- a/src/HOL/List.thy Sat Oct 21 18:11:29 2017 +0200 +++ b/src/HOL/List.thy Sat Oct 21 18:14:59 2017 +0200 @@ -4911,13 +4911,13 @@ sorted_wrt P xs \ sorted_wrt P ys \ (\x\set xs. \y\set ys. P x y)" by (induction xs) (auto simp: sorted_wrt_Cons[OF assms]) -lemma sorted_wrt_rev: assumes "transp P" -shows "sorted_wrt P (rev xs) = sorted_wrt (\x y. P y x) xs" -proof(induction xs rule: sorted_wrt_induct) - case 3 thus ?case - by(simp add: sorted_wrt_append sorted_wrt_Cons assms) - (meson assms transpD) -qed simp_all +lemma sorted_wrt_backwards: + "sorted_wrt P (xs @ [y, z]) = (P y z \ sorted_wrt P (xs @ [y]))" +by (induction xs rule: sorted_wrt_induct) auto + +lemma sorted_wrt_rev: + "sorted_wrt P (rev xs) = sorted_wrt (\x y. P y x) xs" +by (induction xs rule: sorted_wrt_induct) (simp_all add: sorted_wrt_backwards) lemma sorted_wrt_mono: "(\x y. P x y \ Q x y) \ sorted_wrt P xs \ sorted_wrt Q xs"