# HG changeset patch # User huffman # Date 1158731074 -7200 # Node ID e95db20977c50e4fc44621bf2fce6889e40b1d18 # Parent 45fe31e72391179dd48093547ed29660749ff702 change section to subsection diff -r 45fe31e72391 -r e95db20977c5 src/HOL/Hyperreal/Lim.thy --- a/src/HOL/Hyperreal/Lim.thy Wed Sep 20 07:42:12 2006 +0200 +++ b/src/HOL/Hyperreal/Lim.thy Wed Sep 20 07:44:34 2006 +0200 @@ -74,7 +74,7 @@ -section{*Some Purely Standard Proofs*} +subsection{*Some Purely Standard Proofs*} lemma LIM_eq: "f -- a --> L = diff -r 45fe31e72391 -r e95db20977c5 src/HOL/Real/ContNotDenum.thy --- a/src/HOL/Real/ContNotDenum.thy Wed Sep 20 07:42:12 2006 +0200 +++ b/src/HOL/Real/ContNotDenum.thy Wed Sep 20 07:44:34 2006 +0200 @@ -9,7 +9,7 @@ imports RComplete begin -section {* Abstract *} +subsection {* Abstract *} text {* The following document presents a proof that the Continuum is uncountable. It is formalised in the Isabelle/Isar theorem proving @@ -30,17 +30,17 @@ "\\\"} exists and find a real x such that x is not in the range of f by generating a sequence of closed intervals then using the NIP. *} -section {* Closed Intervals *} +subsection {* Closed Intervals *} text {* This section formalises some properties of closed intervals. *} -subsection {* Definition *} +subsubsection {* Definition *} definition closed_int :: "real \ real \ real set" "closed_int x y = {z. x \ z \ z \ y}" -subsection {* Properties *} +subsubsection {* Properties *} lemma closed_int_subset: assumes xy: "x1 \ x0" "y1 \ y0" @@ -99,7 +99,7 @@ qed -section {* Nested Interval Property *} +subsection {* Nested Interval Property *} theorem NIP: fixes f::"nat \ real set" @@ -313,7 +313,7 @@ thus ?thesis by auto qed -section {* Generating the intervals *} +subsection {* Generating the intervals *} subsubsection {* Existence of non-singleton closed intervals *} @@ -560,7 +560,7 @@ qed -section {* Final Theorem *} +subsection {* Final Theorem *} theorem real_non_denum: shows "\ (\f::nat\real. surj f)"