# HG changeset patch # User paulson # Date 1128006177 -7200 # Node ID e969fc0a492566aa11cea905f1c3775116a3a3fb # Parent ee5b42e3cbb4243560bce0e355ded0736dc01254 simprules need names diff -r ee5b42e3cbb4 -r e969fc0a4925 src/HOL/Integ/NatBin.thy --- a/src/HOL/Integ/NatBin.thy Thu Sep 29 15:50:46 2005 +0200 +++ b/src/HOL/Integ/NatBin.thy Thu Sep 29 17:02:57 2005 +0200 @@ -268,10 +268,10 @@ lemma power2_eq_square: "(a::'a::{comm_semiring_1_cancel,recpower})\ = a * a" by (simp add: numeral_2_eq_2 Power.power_Suc) -lemma [simp]: "(0::'a::{comm_semiring_1_cancel,recpower})\ = 0" +lemma zero_power2 [simp]: "(0::'a::{comm_semiring_1_cancel,recpower})\ = 0" by (simp add: power2_eq_square) -lemma [simp]: "(1::'a::{comm_semiring_1_cancel,recpower})\ = 1" +lemma one_power2 [simp]: "(1::'a::{comm_semiring_1_cancel,recpower})\ = 1" by (simp add: power2_eq_square) lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x" diff -r ee5b42e3cbb4 -r e969fc0a4925 src/HOL/List.thy --- a/src/HOL/List.thy Thu Sep 29 15:50:46 2005 +0200 +++ b/src/HOL/List.thy Thu Sep 29 17:02:57 2005 +0200 @@ -1774,7 +1774,7 @@ apply blast done -lemma [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}" +lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}" apply(induct xs) apply simp apply simp @@ -2180,7 +2180,7 @@ set_Cons :: "'a set \ 'a list set \ 'a list set" "set_Cons A XS == {z. \x xs. z = x#xs & x \ A & xs \ XS}" -lemma [simp]: "set_Cons A {[]} = (%x. [x])`A" +lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A" by (auto simp add: set_Cons_def) text{*Yields the set of lists, all of the same length as the argument and diff -r ee5b42e3cbb4 -r e969fc0a4925 src/HOL/Map.thy --- a/src/HOL/Map.thy Thu Sep 29 15:50:46 2005 +0200 +++ b/src/HOL/Map.thy Thu Sep 29 17:02:57 2005 +0200 @@ -202,7 +202,7 @@ "distinct(map fst xys) \ (Some y = map_of xys x) = ((x,y) \ set xys)" by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric]) -lemma [simp]: "\ distinct(map fst xys); (x,y) \ set xys \ +lemma map_of_is_SomeI [simp]: "\ distinct(map fst xys); (x,y) \ set xys \ \ map_of xys x = Some y" apply (induct xys) apply simp @@ -553,13 +553,13 @@ lemma map_le_empty [simp]: "empty \\<^sub>m g" by(simp add:map_le_def) -lemma [simp]: "f(x := None) \\<^sub>m f" +lemma upd_None_map_le [simp]: "f(x := None) \\<^sub>m f" by(force simp add:map_le_def) lemma map_le_upd[simp]: "f \\<^sub>m g ==> f(a := b) \\<^sub>m g(a := b)" by(fastsimp simp add:map_le_def) -lemma [simp]: "m1 \\<^sub>m m2 \ m1(x := None) \\<^sub>m m2(x \ y)" +lemma map_le_imp_upd_le [simp]: "m1 \\<^sub>m m2 \ m1(x := None) \\<^sub>m m2(x \ y)" by(force simp add:map_le_def) lemma map_le_upds[simp]: