# HG changeset patch # User wenzelm # Date 1158704664 -7200 # Node ID e98f59806244598114bcdca2791c1dd5eda619f9 # Parent 40abbc7c86df1e370dbc7570040fdd300f85d05c renamed axclass_xxxx axclasses; diff -r 40abbc7c86df -r e98f59806244 src/HOL/Hyperreal/NSA.thy --- a/src/HOL/Hyperreal/NSA.thy Tue Sep 19 23:18:41 2006 +0200 +++ b/src/HOL/Hyperreal/NSA.thy Wed Sep 20 00:24:24 2006 +0200 @@ -954,7 +954,7 @@ (*again: 1 is a special case, but not 0 this time*) lemma one_not_Infinitesimal [simp]: - "(1::'a::{real_normed_vector,axclass_0_neq_1} star) \ Infinitesimal" + "(1::'a::{real_normed_vector,zero_neq_one} star) \ Infinitesimal" apply (simp only: star_one_def star_of_Infinitesimal_iff_0) apply simp done @@ -1032,8 +1032,8 @@ (number_of w = (1::'b))" "((1::'b::{number,one,real_normed_vector} star) @= number_of w) = (number_of w = (1::'b))" - "~ (0 @= (1::'c::{axclass_0_neq_1,real_normed_vector} star))" - "~ (1 @= (0::'c::{axclass_0_neq_1,real_normed_vector} star))" + "~ (0 @= (1::'c::{zero_neq_one,real_normed_vector} star))" + "~ (1 @= (0::'c::{zero_neq_one,real_normed_vector} star))" apply (unfold star_number_def star_zero_def star_one_def) apply (unfold star_of_approx_iff) by (auto intro: sym) diff -r 40abbc7c86df -r e98f59806244 src/HOL/Hyperreal/StarClasses.thy --- a/src/HOL/Hyperreal/StarClasses.thy Tue Sep 19 23:18:41 2006 +0200 +++ b/src/HOL/Hyperreal/StarClasses.thy Wed Sep 20 00:24:24 2006 +0200 @@ -283,13 +283,13 @@ instance star :: (comm_semiring_0) comm_semiring_0 .. instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel .. -instance star :: (axclass_0_neq_1) axclass_0_neq_1 +instance star :: (zero_neq_one) zero_neq_one by (intro_classes, transfer, rule zero_neq_one) instance star :: (semiring_1) semiring_1 .. instance star :: (comm_semiring_1) comm_semiring_1 .. -instance star :: (axclass_no_zero_divisors) axclass_no_zero_divisors +instance star :: (no_zero_divisors) no_zero_divisors by (intro_classes, transfer, rule no_zero_divisors) instance star :: (semiring_1_cancel) semiring_1_cancel .. @@ -340,7 +340,7 @@ instance star :: (pordered_ring) pordered_ring .. instance star :: (lordered_ring) lordered_ring .. -instance star :: (axclass_abs_if) axclass_abs_if +instance star :: (abs_if) abs_if by (intro_classes, transfer, rule abs_if) instance star :: (ordered_ring_strict) ordered_ring_strict .. diff -r 40abbc7c86df -r e98f59806244 src/HOL/Matrix/Matrix.thy --- a/src/HOL/Matrix/Matrix.thy Tue Sep 19 23:18:41 2006 +0200 +++ b/src/HOL/Matrix/Matrix.thy Wed Sep 20 00:24:24 2006 +0200 @@ -132,14 +132,14 @@ apply (rule exI[of _ n], simp add: split_if)+ by (simp add: split_if) -lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _") +lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") proof - have "?r <= n" by (simp add: nrows_le) moreover have "n <= ?r" by (simp add:le_nrows, arith) ultimately show "?r = n" by simp qed -lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _") +lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") proof - have "?r <= n" by (simp add: ncols_le) moreover have "n <= ?r" by (simp add: le_ncols, arith) diff -r 40abbc7c86df -r e98f59806244 src/HOL/Ring_and_Field.thy --- a/src/HOL/Ring_and_Field.thy Tue Sep 19 23:18:41 2006 +0200 +++ b/src/HOL/Ring_and_Field.thy Wed Sep 20 00:24:24 2006 +0200 @@ -241,10 +241,10 @@ instance lordered_ring \ lordered_ab_group_join .. -axclass axclass_abs_if \ minus, ord, zero +axclass abs_if \ minus, ord, zero abs_if: "abs a = (if (a < 0) then (-a) else a)" -axclass ordered_ring_strict \ ring, ordered_semiring_strict, axclass_abs_if +axclass ordered_ring_strict \ ring, ordered_semiring_strict, abs_if instance ordered_ring_strict \ lordered_ab_group .. @@ -256,7 +256,7 @@ axclass ordered_semidom \ comm_semiring_1_cancel, ordered_comm_semiring_strict (* previously ordered_semiring *) zero_less_one [simp]: "0 < 1" -axclass ordered_idom \ comm_ring_1, ordered_comm_semiring_strict, axclass_abs_if (* previously ordered_ring *) +axclass ordered_idom \ comm_ring_1, ordered_comm_semiring_strict, abs_if (* previously ordered_ring *) instance ordered_idom \ ordered_ring_strict ..