# HG changeset patch # User huffman # Date 1272558587 25200 # Node ID eacded3b05f71fa9160e013789940d68c3c351eb # Parent df38e0c5c12372e5130b0d87e5887670782c6dfd remove unused function vector_power, unused lemma one_plus_of_nat_neq_0 diff -r df38e0c5c123 -r eacded3b05f7 src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Thu Apr 29 09:17:25 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Thu Apr 29 09:29:47 2010 -0700 @@ -126,10 +126,6 @@ instance cart :: (comm_monoid_mult,finite) comm_monoid_mult apply (intro_classes) by vector -fun vector_power where - "vector_power x 0 = 1" - | "vector_power x (Suc n) = x * vector_power x n" - instance cart :: (semiring,finite) semiring apply (intro_classes) by (vector field_simps)+ @@ -169,13 +165,6 @@ lemma one_index[simp]: "(1 :: 'a::one ^'n)$i = 1" by vector -lemma one_plus_of_nat_neq_0: "(1::'a::semiring_char_0) + of_nat n \ 0" -proof- - have "(1::'a) + of_nat n = 0 \ of_nat 1 + of_nat n = (of_nat 0 :: 'a)" by simp - also have "\ \ 1 + n = 0" by (simp only: of_nat_add[symmetric] of_nat_eq_iff) - finally show ?thesis by simp -qed - instance cart :: (semiring_char_0,finite) semiring_char_0 proof (intro_classes) fix m n ::nat