# HG changeset patch # User nipkow # Date 1258118056 -3600 # Node ID eb8b9c8a3662d2522d313f32054a4359c3ff04a5 # Parent fc1af67532334c0e9f10cdd96e9f70baf50a8ee4# Parent a4179bf442d14991bbb340f47bb95b986727b403 merged diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Algebra/IntRing.thy --- a/src/HOL/Algebra/IntRing.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Algebra/IntRing.thy Fri Nov 13 14:14:16 2009 +0100 @@ -12,26 +12,6 @@ subsection {* Some properties of @{typ int} *} -lemma dvds_imp_abseq: - "\l dvd k; k dvd l\ \ abs l = abs (k::int)" -apply (subst abs_split, rule conjI) - apply (clarsimp, subst abs_split, rule conjI) - apply (clarsimp) - apply (cases "k=0", simp) - apply (cases "l=0", simp) - apply (simp add: zdvd_anti_sym) - apply clarsimp - apply (cases "k=0", simp) - apply (simp add: zdvd_anti_sym) -apply (clarsimp, subst abs_split, rule conjI) - apply (clarsimp) - apply (cases "l=0", simp) - apply (simp add: zdvd_anti_sym) -apply (clarsimp) -apply (subgoal_tac "-l = -k", simp) -apply (intro zdvd_anti_sym, simp+) -done - lemma abseq_imp_dvd: assumes a_lk: "abs l = abs (k::int)" shows "l dvd k" @@ -55,7 +35,7 @@ lemma dvds_eq_abseq: "(l dvd k \ k dvd l) = (abs l = abs (k::int))" apply rule - apply (simp add: dvds_imp_abseq) + apply (simp add: zdvd_antisym_abs) apply (rule conjI) apply (simp add: abseq_imp_dvd)+ done diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Algebra/Lattice.thy --- a/src/HOL/Algebra/Lattice.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Algebra/Lattice.thy Fri Nov 13 14:14:16 2009 +0100 @@ -18,7 +18,7 @@ locale weak_partial_order = equivalence L for L (structure) + assumes le_refl [intro, simp]: "x \ carrier L ==> x \ x" - and weak_le_anti_sym [intro]: + and weak_le_antisym [intro]: "[| x \ y; y \ x; x \ carrier L; y \ carrier L |] ==> x .= y" and le_trans [trans]: "[| x \ y; y \ z; x \ carrier L; y \ carrier L; z \ carrier L |] ==> x \ z" @@ -636,7 +636,7 @@ fix s assume sup: "least L s (Upper L {x, y, z})" show "x \ (y \ z) .= s" - proof (rule weak_le_anti_sym) + proof (rule weak_le_antisym) from sup L show "x \ (y \ z) \ s" by (fastsimp intro!: join_le elim: least_Upper_above) next @@ -877,7 +877,7 @@ fix i assume inf: "greatest L i (Lower L {x, y, z})" show "x \ (y \ z) .= i" - proof (rule weak_le_anti_sym) + proof (rule weak_le_antisym) from inf L show "i \ x \ (y \ z)" by (fastsimp intro!: meet_le elim: greatest_Lower_below) next @@ -1089,11 +1089,11 @@ assumes eq_is_equal: "op .= = op =" begin -declare weak_le_anti_sym [rule del] +declare weak_le_antisym [rule del] -lemma le_anti_sym [intro]: +lemma le_antisym [intro]: "[| x \ y; y \ x; x \ carrier L; y \ carrier L |] ==> x = y" - using weak_le_anti_sym unfolding eq_is_equal . + using weak_le_antisym unfolding eq_is_equal . lemma lless_eq: "x \ y \ x \ y & x \ y" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Algebra/Sylow.thy --- a/src/HOL/Algebra/Sylow.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Algebra/Sylow.thy Fri Nov 13 14:14:16 2009 +0100 @@ -344,7 +344,7 @@ done lemma (in sylow_central) card_H_eq: "card(H) = p^a" -by (blast intro: le_anti_sym lemma_leq1 lemma_leq2) +by (blast intro: le_antisym lemma_leq1 lemma_leq2) lemma (in sylow) sylow_thm: "\H. subgroup H G & card(H) = p^a" apply (cut_tac lemma_A1, clarify) diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Algebra/UnivPoly.thy Fri Nov 13 14:14:16 2009 +0100 @@ -811,7 +811,7 @@ lemma deg_eqI: "[| !!m. n < m ==> coeff P p m = \; !!n. n ~= 0 ==> coeff P p n ~= \; p \ carrier P |] ==> deg R p = n" -by (fast intro: le_anti_sym deg_aboveI deg_belowI) +by (fast intro: le_antisym deg_aboveI deg_belowI) text {* Degree and polynomial operations *} @@ -826,11 +826,11 @@ lemma deg_monom [simp]: "[| a ~= \; a \ carrier R |] ==> deg R (monom P a n) = n" - by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI) + by (fastsimp intro: le_antisym deg_aboveI deg_belowI) lemma deg_const [simp]: assumes R: "a \ carrier R" shows "deg R (monom P a 0) = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add: R) next show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add: R) @@ -838,7 +838,7 @@ lemma deg_zero [simp]: "deg R \\<^bsub>P\<^esub> = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg R \\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all next show "0 <= deg R \\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all @@ -846,7 +846,7 @@ lemma deg_one [simp]: "deg R \\<^bsub>P\<^esub> = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg R \\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all next show "0 <= deg R \\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all @@ -854,7 +854,7 @@ lemma deg_uminus [simp]: assumes R: "p \ carrier P" shows "deg R (\\<^bsub>P\<^esub> p) = deg R p" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg R (\\<^bsub>P\<^esub> p) <= deg R p" by (simp add: deg_aboveI deg_aboveD R) next show "deg R p <= deg R (\\<^bsub>P\<^esub> p)" @@ -878,7 +878,7 @@ lemma deg_smult [simp]: assumes R: "a \ carrier R" "p \ carrier P" shows "deg R (a \\<^bsub>P\<^esub> p) = (if a = \ then 0 else deg R p)" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg R (a \\<^bsub>P\<^esub> p) <= (if a = \ then 0 else deg R p)" using R by (rule deg_smult_ring) next @@ -920,7 +920,7 @@ lemma deg_mult [simp]: "[| p ~= \\<^bsub>P\<^esub>; q ~= \\<^bsub>P\<^esub>; p \ carrier P; q \ carrier P |] ==> deg R (p \\<^bsub>P\<^esub> q) = deg R p + deg R q" -proof (rule le_anti_sym) +proof (rule le_antisym) assume "p \ carrier P" " q \ carrier P" then show "deg R (p \\<^bsub>P\<^esub> q) <= deg R p + deg R q" by (rule deg_mult_ring) next diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Algebra/poly/UnivPoly2.thy --- a/src/HOL/Algebra/poly/UnivPoly2.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Algebra/poly/UnivPoly2.thy Fri Nov 13 14:14:16 2009 +0100 @@ -557,7 +557,7 @@ lemma deg_eqI: "[| !!m. n < m ==> coeff p m = 0; !!n. n ~= 0 ==> coeff p n ~= 0|] ==> deg p = n" -by (fast intro: le_anti_sym deg_aboveI deg_belowI) +by (fast intro: le_antisym deg_aboveI deg_belowI) (* Degree and polynomial operations *) @@ -571,11 +571,11 @@ lemma deg_monom [simp]: "a ~= 0 ==> deg (monom a n::'a::ring up) = n" -by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI) +by (fastsimp intro: le_antisym deg_aboveI deg_belowI) lemma deg_const [simp]: "deg (monom (a::'a::ring) 0) = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (monom a 0) <= 0" by (rule deg_aboveI) simp next show "0 <= deg (monom a 0)" by (rule deg_belowI) simp @@ -583,7 +583,7 @@ lemma deg_zero [simp]: "deg 0 = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg 0 <= 0" by (rule deg_aboveI) simp next show "0 <= deg 0" by (rule deg_belowI) simp @@ -591,7 +591,7 @@ lemma deg_one [simp]: "deg 1 = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg 1 <= 0" by (rule deg_aboveI) simp next show "0 <= deg 1" by (rule deg_belowI) simp @@ -612,7 +612,7 @@ lemma deg_uminus [simp]: "deg (-p::('a::ring) up) = deg p" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (- p) <= deg p" by (simp add: deg_aboveI deg_aboveD) next show "deg p <= deg (- p)" @@ -626,7 +626,7 @@ lemma deg_smult [simp]: "deg ((a::'a::domain) *s p) = (if a = 0 then 0 else deg p)" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (a *s p) <= (if a = 0 then 0 else deg p)" by (rule deg_smult_ring) next show "(if a = 0 then 0 else deg p) <= deg (a *s p)" @@ -657,7 +657,7 @@ lemma deg_mult [simp]: "[| (p::'a::domain up) ~= 0; q ~= 0|] ==> deg (p * q) = deg p + deg q" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (p * q) <= deg p + deg q" by (rule deg_mult_ring) next let ?s = "(%i. coeff p i * coeff q (deg p + deg q - i))" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Finite_Set.thy Fri Nov 13 14:14:16 2009 +0100 @@ -2344,7 +2344,7 @@ lemma card_bij_eq: "[|inj_on f A; f ` A \ B; inj_on g B; g ` B \ A; finite A; finite B |] ==> card A = card B" -by (auto intro: le_anti_sym card_inj_on_le) +by (auto intro: le_antisym card_inj_on_le) subsubsection {* Cardinality of products *} diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/GCD.thy --- a/src/HOL/GCD.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/GCD.thy Fri Nov 13 14:14:16 2009 +0100 @@ -312,13 +312,13 @@ by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith) lemma gcd_commute_nat: "gcd (m::nat) n = gcd n m" - by (rule dvd_anti_sym, auto) + by (rule dvd_antisym, auto) lemma gcd_commute_int: "gcd (m::int) n = gcd n m" by (auto simp add: gcd_int_def gcd_commute_nat) lemma gcd_assoc_nat: "gcd (gcd (k::nat) m) n = gcd k (gcd m n)" - apply (rule dvd_anti_sym) + apply (rule dvd_antisym) apply (blast intro: dvd_trans)+ done @@ -339,23 +339,18 @@ lemma gcd_unique_nat: "(d::nat) dvd a \ d dvd b \ (\e. e dvd a \ e dvd b \ e dvd d) \ d = gcd a b" apply auto - apply (rule dvd_anti_sym) + apply (rule dvd_antisym) apply (erule (1) gcd_greatest_nat) apply auto done lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \ d dvd b \ (\e. e dvd a \ e dvd b \ e dvd d) \ d = gcd a b" - apply (case_tac "d = 0") - apply force - apply (rule iffI) - apply (rule zdvd_anti_sym) - apply arith - apply (subst gcd_pos_int) - apply clarsimp - apply (drule_tac x = "d + 1" in spec) - apply (frule zdvd_imp_le) - apply (auto intro: gcd_greatest_int) +apply (case_tac "d = 0") + apply simp +apply (rule iffI) + apply (rule zdvd_antisym_nonneg) + apply (auto intro: gcd_greatest_int) done lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \ gcd x y = x" @@ -417,7 +412,7 @@ by (auto intro: coprime_dvd_mult_int) lemma gcd_mult_cancel_nat: "coprime k n \ gcd ((k::nat) * m) n = gcd m n" - apply (rule dvd_anti_sym) + apply (rule dvd_antisym) apply (rule gcd_greatest_nat) apply (rule_tac n = k in coprime_dvd_mult_nat) apply (simp add: gcd_assoc_nat) @@ -1381,11 +1376,11 @@ lemma lcm_unique_nat: "(a::nat) dvd d \ b dvd d \ (\e. a dvd e \ b dvd e \ d dvd e) \ d = lcm a b" - by (auto intro: dvd_anti_sym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat) + by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat) lemma lcm_unique_int: "d >= 0 \ (a::int) dvd d \ b dvd d \ (\e. a dvd e \ b dvd e \ d dvd e) \ d = lcm a b" - by (auto intro: dvd_anti_sym [transferred] lcm_least_int) + by (auto intro: dvd_antisym [transferred] lcm_least_int) lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \ lcm x y = y" apply (rule sym) diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Hoare/Arith2.thy --- a/src/HOL/Hoare/Arith2.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Hoare/Arith2.thy Fri Nov 13 14:14:16 2009 +0100 @@ -58,7 +58,7 @@ apply (frule cd_nnn) apply (rule some_equality [symmetric]) apply (blast dest: cd_le) - apply (blast intro: le_anti_sym dest: cd_le) + apply (blast intro: le_antisym dest: cd_le) done lemma gcd_swap: "gcd m n = gcd n m" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Import/HOL/arithmetic.imp --- a/src/HOL/Import/HOL/arithmetic.imp Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Import/HOL/arithmetic.imp Fri Nov 13 14:14:16 2009 +0100 @@ -191,7 +191,7 @@ "LESS_EQ_ADD_SUB" > "Nat.add_diff_assoc" "LESS_EQ_ADD" > "Nat.le_add1" "LESS_EQ_0" > "Nat.le_0_eq" - "LESS_EQUAL_ANTISYM" > "Nat.le_anti_sym" + "LESS_EQUAL_ANTISYM" > "Nat.le_antisym" "LESS_EQUAL_ADD" > "HOL4Base.arithmetic.LESS_EQUAL_ADD" "LESS_EQ" > "Nat.le_simps_3" "LESS_DIV_EQ_ZERO" > "Divides.div_less" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Import/HOL/divides.imp --- a/src/HOL/Import/HOL/divides.imp Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Import/HOL/divides.imp Fri Nov 13 14:14:16 2009 +0100 @@ -16,7 +16,7 @@ "DIVIDES_MULT" > "Divides.dvd_mult2" "DIVIDES_LE" > "Divides.dvd_imp_le" "DIVIDES_FACT" > "HOL4Base.divides.DIVIDES_FACT" - "DIVIDES_ANTISYM" > "Divides.dvd_anti_sym" + "DIVIDES_ANTISYM" > "Divides.dvd_antisym" "DIVIDES_ADD_2" > "HOL4Base.divides.DIVIDES_ADD_2" "DIVIDES_ADD_1" > "Ring_and_Field.dvd_add" "ALL_DIVIDES_0" > "Divides.dvd_0_right" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Int.thy --- a/src/HOL/Int.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Int.thy Fri Nov 13 14:14:16 2009 +0100 @@ -1986,15 +1986,18 @@ subsection {* The divides relation *} -lemma zdvd_anti_sym: - "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)" +lemma zdvd_antisym_nonneg: + "0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)" apply (simp add: dvd_def, auto) - apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff) + apply (auto simp add: mult_assoc zero_le_mult_iff zmult_eq_1_iff) done -lemma zdvd_dvd_eq: assumes "a \ 0" and "(a::int) dvd b" and "b dvd a" +lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a" shows "\a\ = \b\" -proof- +proof cases + assume "a = 0" with assms show ?thesis by simp +next + assume "a \ 0" from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast from k k' have "a = a*k*k'" by simp @@ -2326,7 +2329,7 @@ lemmas zle_refl = order_refl [of "w::int", standard] lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard] -lemmas zle_anti_sym = order_antisym [of "z::int" "w", standard] +lemmas zle_antisym = order_antisym [of "z::int" "w", standard] lemmas zle_linear = linorder_linear [of "z::int" "w", standard] lemmas zless_linear = linorder_less_linear [where 'a = int] diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Library/Abstract_Rat.thy --- a/src/HOL/Library/Abstract_Rat.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Library/Abstract_Rat.thy Fri Nov 13 14:14:16 2009 +0100 @@ -206,7 +206,7 @@ apply simp apply algebra done - from zdvd_dvd_eq[OF bz coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] + from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] have eq1: "b = b'" using pos by arith with eq have "a = a'" using pos by simp diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Matrix/Matrix.thy --- a/src/HOL/Matrix/Matrix.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Matrix/Matrix.thy Fri Nov 13 14:14:16 2009 +0100 @@ -873,7 +873,7 @@ have th: "\ (\m. m \ j)" "\n. \ n \ i" by arith+ from th show ?thesis apply (auto) -apply (rule le_anti_sym) +apply (rule le_antisym) apply (subst nrows_le) apply (simp add: singleton_matrix_def, auto) apply (subst RepAbs_matrix) @@ -889,7 +889,7 @@ have th: "\ (\m. m \ j)" "\n. \ n \ i" by arith+ from th show ?thesis apply (auto) -apply (rule le_anti_sym) +apply (rule le_antisym) apply (subst ncols_le) apply (simp add: singleton_matrix_def, auto) apply (subst RepAbs_matrix) @@ -1004,7 +1004,7 @@ apply (subst foldseq_almostzero[of _ j]) apply (simp add: prems)+ apply (auto) - apply (metis comm_monoid_add.mult_1 le_anti_sym le_diff_eq not_neg_nat zero_le_imp_of_nat zle_int) + apply (metis comm_monoid_add.mult_1 le_antisym le_diff_eq not_neg_nat zero_le_imp_of_nat zle_int) done lemma mult_matrix_ext: diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Nat.thy Fri Nov 13 14:14:16 2009 +0100 @@ -596,7 +596,7 @@ lemma le_trans: "[| i \ j; j \ k |] ==> i \ (k::nat)" by (rule order_trans) -lemma le_anti_sym: "[| m \ n; n \ m |] ==> m = (n::nat)" +lemma le_antisym: "[| m \ n; n \ m |] ==> m = (n::nat)" by (rule antisym) lemma nat_less_le: "((m::nat) < n) = (m \ n & m \ n)" @@ -1611,14 +1611,14 @@ lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \ m = 1" by (simp add: dvd_def) -lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)" +lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)" unfolding dvd_def by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff) text {* @{term "op dvd"} is a partial order *} interpretation dvd: order "op dvd" "\n m \ nat. n dvd m \ \ m dvd n" - proof qed (auto intro: dvd_refl dvd_trans dvd_anti_sym) + proof qed (auto intro: dvd_refl dvd_trans dvd_antisym) lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)" unfolding dvd_def diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Number_Theory/UniqueFactorization.thy --- a/src/HOL/Number_Theory/UniqueFactorization.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Number_Theory/UniqueFactorization.thy Fri Nov 13 14:14:16 2009 +0100 @@ -844,7 +844,7 @@ mult_eq [simp]: "!!p. prime p \ multiplicity p x = multiplicity p y" shows "x = y" - apply (rule dvd_anti_sym) + apply (rule dvd_antisym) apply (auto intro: multiplicity_dvd'_nat) done @@ -854,7 +854,7 @@ mult_eq [simp]: "!!p. prime p \ multiplicity p x = multiplicity p y" shows "x = y" - apply (rule dvd_anti_sym [transferred]) + apply (rule dvd_antisym [transferred]) apply (auto intro: multiplicity_dvd'_int) done diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Old_Number_Theory/IntPrimes.thy --- a/src/HOL/Old_Number_Theory/IntPrimes.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Old_Number_Theory/IntPrimes.thy Fri Nov 13 14:14:16 2009 +0100 @@ -204,7 +204,7 @@ apply (case_tac [2] "0 \ ka") apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult) apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute) - apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_anti_sym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult) + apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_antisym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult) apply (metis dvd_triv_left) done diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Old_Number_Theory/Legacy_GCD.thy --- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy Fri Nov 13 14:14:16 2009 +0100 @@ -23,7 +23,7 @@ text {* Uniqueness *} lemma is_gcd_unique: "is_gcd a b m \ is_gcd a b n \ m = n" - by (simp add: is_gcd_def) (blast intro: dvd_anti_sym) + by (simp add: is_gcd_def) (blast intro: dvd_antisym) text {* Connection to divides relation *} @@ -156,7 +156,7 @@ by (auto intro: relprime_dvd_mult dvd_mult2) lemma gcd_mult_cancel: "gcd k n = 1 ==> gcd (k * m) n = gcd m n" - apply (rule dvd_anti_sym) + apply (rule dvd_antisym) apply (rule gcd_greatest) apply (rule_tac n = k in relprime_dvd_mult) apply (simp add: gcd_assoc) @@ -223,7 +223,7 @@ assume H: "d dvd a" "d dvd b" "\e. e dvd a \ e dvd b \ e dvd d" from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] have th: "gcd a b dvd d" by blast - from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd a b" by blast + from dvd_antisym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd a b" by blast qed lemma gcd_eq: assumes H: "\d. d dvd x \ d dvd y \ d dvd u \ d dvd v" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Old_Number_Theory/Pocklington.thy --- a/src/HOL/Old_Number_Theory/Pocklington.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Old_Number_Theory/Pocklington.thy Fri Nov 13 14:14:16 2009 +0100 @@ -935,7 +935,7 @@ p: "prime p" "p dvd m" by blast from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast with p(2) have "n dvd m" by simp - hence "m=n" using dvd_anti_sym[OF m(1)] by simp } + hence "m=n" using dvd_antisym[OF m(1)] by simp } with n1 have "prime n" unfolding prime_def by auto } ultimately have ?thesis using n by blast} ultimately show ?thesis by auto diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Old_Number_Theory/Primes.thy --- a/src/HOL/Old_Number_Theory/Primes.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Old_Number_Theory/Primes.thy Fri Nov 13 14:14:16 2009 +0100 @@ -97,7 +97,7 @@ text {* Elementary theory of divisibility *} lemma divides_ge: "(a::nat) dvd b \ b = 0 \ a \ b" unfolding dvd_def by auto lemma divides_antisym: "(x::nat) dvd y \ y dvd x \ x = y" - using dvd_anti_sym[of x y] by auto + using dvd_antisym[of x y] by auto lemma divides_add_revr: assumes da: "(d::nat) dvd a" and dab:"d dvd (a + b)" shows "d dvd b" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Probability/Borel.thy --- a/src/HOL/Probability/Borel.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Probability/Borel.thy Fri Nov 13 14:14:16 2009 +0100 @@ -73,7 +73,7 @@ with w have "real(Suc(natceiling(inverse(g w - f w)))) > inverse(g w - f w)" by (metis lessI order_le_less_trans real_natceiling_ge real_of_nat_less_iff) hence "inverse(real(Suc(natceiling(inverse(g w - f w))))) < inverse(inverse(g w - f w))" - by (metis less_iff_diff_less_0 less_imp_inverse_less linorder_neqE_ordered_idom nz positive_imp_inverse_positive real_le_anti_sym real_less_def w) + by (metis less_iff_diff_less_0 less_imp_inverse_less linorder_neqE_ordered_idom nz positive_imp_inverse_positive real_le_antisym real_less_def w) hence "inverse(real(Suc(natceiling(inverse(g w - f w))))) < g w - f w" by (metis inverse_inverse_eq order_less_le_trans real_le_refl) thus "\n. f w \ g w - inverse(real(Suc n))" using w diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/Probability/Measure.thy --- a/src/HOL/Probability/Measure.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/Probability/Measure.thy Fri Nov 13 14:14:16 2009 +0100 @@ -356,7 +356,7 @@ by (metis add_commute le_add_diff_inverse nat_less_le) thus ?thesis by (auto simp add: disjoint_family_def) - (metis insert_absorb insert_subset le_SucE le_anti_sym not_leE) + (metis insert_absorb insert_subset le_SucE le_antisym not_leE) qed diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/RealDef.thy --- a/src/HOL/RealDef.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/RealDef.thy Fri Nov 13 14:14:16 2009 +0100 @@ -321,7 +321,7 @@ apply (auto intro: real_le_lemma) done -lemma real_le_anti_sym: "[| z \ w; w \ z |] ==> z = (w::real)" +lemma real_le_antisym: "[| z \ w; w \ z |] ==> z = (w::real)" by (cases z, cases w, simp add: real_le) lemma real_trans_lemma: @@ -347,8 +347,8 @@ proof fix u v :: real show "u < v \ u \ v \ \ v \ u" - by (auto simp add: real_less_def intro: real_le_anti_sym) -qed (assumption | rule real_le_refl real_le_trans real_le_anti_sym)+ + by (auto simp add: real_less_def intro: real_le_antisym) +qed (assumption | rule real_le_refl real_le_trans real_le_antisym)+ (* Axiom 'linorder_linear' of class 'linorder': *) lemma real_le_linear: "(z::real) \ w | w \ z" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/SupInf.thy --- a/src/HOL/SupInf.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/SupInf.thy Fri Nov 13 14:14:16 2009 +0100 @@ -118,7 +118,7 @@ shows "(!!x. x \ X \ x \ a) \ (!!y. (!!x. x \ X \ x \ y) \ a \ y) \ Sup X = a" by (metis Sup_least Sup_upper add_le_cancel_left diff_add_cancel insert_absorb - insert_not_empty real_le_anti_sym) + insert_not_empty real_le_antisym) lemma Sup_le: fixes S :: "real set" @@ -317,7 +317,7 @@ fixes a :: real shows "(!!x. x \ X \ a \ x) \ (!!y. (!!x. x \ X \ y \ x) \ y \ a) \ Inf X = a" by (metis Inf_greatest Inf_lower add_le_cancel_left diff_add_cancel - insert_absorb insert_not_empty real_le_anti_sym) + insert_absorb insert_not_empty real_le_antisym) lemma Inf_ge: fixes S :: "real set" @@ -397,7 +397,7 @@ fixes S :: "real set" shows "finite S \ S \ {} \ a \ Inf S \ (\ x \ S. a \ x)" by (metis Inf_finite_Min Inf_finite_ge_iff Inf_finite_in Min_le - real_le_anti_sym real_le_linear) + real_le_antisym real_le_linear) lemma Inf_finite_gt_iff: fixes S :: "real set" diff -r fc1af6753233 -r eb8b9c8a3662 src/HOL/ex/LocaleTest2.thy --- a/src/HOL/ex/LocaleTest2.thy Fri Nov 13 14:03:24 2009 +0100 +++ b/src/HOL/ex/LocaleTest2.thy Fri Nov 13 14:14:16 2009 +0100 @@ -29,7 +29,7 @@ locale dpo = fixes le :: "['a, 'a] => bool" (infixl "\" 50) assumes refl [intro, simp]: "x \ x" - and anti_sym [intro]: "[| x \ y; y \ x |] ==> x = y" + and antisym [intro]: "[| x \ y; y \ x |] ==> x = y" and trans [trans]: "[| x \ y; y \ z |] ==> x \ z" begin @@ -87,7 +87,7 @@ assume inf: "is_inf x y i" assume inf': "is_inf x y i'" show ?thesis - proof (rule anti_sym) + proof (rule antisym) from inf' show "i \ i'" proof (rule is_inf_greatest) from inf show "i \ x" .. @@ -159,7 +159,7 @@ assume sup: "is_sup x y s" assume sup': "is_sup x y s'" show ?thesis - proof (rule anti_sym) + proof (rule antisym) from sup show "s \ s'" proof (rule is_sup_least) from sup' show "x \ s'" .. @@ -457,7 +457,7 @@ moreover { assume c: "x \ y | x \ z" from c have "?l = x" - by (metis (*anti_sym*) (*c*) (*circular*) (*join_assoc*)(* join_commute *) join_connection2 (*join_left*) join_related2 meet_connection(* meet_related2*) total trans) + by (metis (*antisym*) (*c*) (*circular*) (*join_assoc*)(* join_commute *) join_connection2 (*join_left*) join_related2 meet_connection(* meet_related2*) total trans) also from c have "... = ?r" by (metis join_commute join_related2 meet_connection meet_related2 total) finally have "?l = ?r" . }