# HG changeset patch # User nipkow # Date 1479828125 -3600 # Node ID ec766f7b887ec63ade54669b4137e1bae90596b7 # Parent 233a11ed2dfb437455a497fbdd475e9618273ac7 added simp rule diff -r 233a11ed2dfb -r ec766f7b887e src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Tue Nov 15 17:39:40 2016 +0100 +++ b/src/HOL/Transcendental.thy Tue Nov 22 16:22:05 2016 +0100 @@ -2634,6 +2634,10 @@ and less_powr_iff = log_less_iff[symmetric] and le_powr_iff = log_le_iff[symmetric] +lemma gr_one_powr[simp]: + fixes x y :: real shows "\ x > 1; y > 0 \ \ 1 < x powr y" +by(simp add: less_powr_iff) + lemma floor_log_eq_powr_iff: "x > 0 \ b > 1 \ \log b x\ = k \ b powr k \ x \ x < b powr (k + 1)" by (auto simp add: floor_eq_iff powr_le_iff less_powr_iff) @@ -2712,6 +2716,7 @@ lemma log_powr: "x \ 0 \ log b (x powr y) = y * log b x" by (simp add: log_def ln_powr) +(* [simp] is not worth it, interferes with some proofs *) lemma log_nat_power: "0 < x \ log b (x^n) = real n * log b x" by (simp add: log_powr powr_realpow [symmetric])