# HG changeset patch # User huffman # Date 1235573595 28800 # Node ID ecb557b021b245d24ac797c0396ac562094b06f3 # Parent 43c5b7bfc791e29d781e5c7ecd08613c6564268e add lemma diff_Suc_1 diff -r 43c5b7bfc791 -r ecb557b021b2 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Tue Feb 24 11:12:58 2009 -0800 +++ b/src/HOL/Nat.thy Wed Feb 25 06:53:15 2009 -0800 @@ -280,6 +280,9 @@ lemma diff_add_0: "n - (n + m) = (0::nat)" by (induct n) simp_all +lemma diff_Suc_1 [simp]: "Suc n - 1 = n" + unfolding One_nat_def by simp + text {* Difference distributes over multiplication *} lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"