# HG changeset patch # User paulson # Date 1507670338 -3600 # Node ID ecc99a5a1ab8095604f2a2c1f5fe58b23ca7343a # Parent c925393ae6b93f2f2fdd83135db84676e2b45423 fixed markup diff -r c925393ae6b9 -r ecc99a5a1ab8 src/HOL/Analysis/Connected.thy --- a/src/HOL/Analysis/Connected.thy Tue Oct 10 20:33:29 2017 +0200 +++ b/src/HOL/Analysis/Connected.thy Tue Oct 10 22:18:58 2017 +0100 @@ -1,9 +1,9 @@ -(* Author: L C Paulson, University of Cambridge*) +(* Author: L C Paulson, University of Cambridge + Material split off from Topology_Euclidean_Space +*) section \Connected Components, Homeomorphisms, Baire property, etc.\ -text\Material split off from Topology_Euclidean_Space\ - theory Connected imports Topology_Euclidean_Space begin @@ -1266,18 +1266,9 @@ then obtain N :: nat where N: "\n\N. dist (t n) l < e" using l[unfolded lim_sequentially] by auto have "t (max n N) \ s n" - using assms(3) - unfolding subset_eq - apply (erule_tac x=n in allE) - apply (erule_tac x="max n N" in allE) - using t - apply auto - done + by (meson assms(3) contra_subsetD max.cobounded1 t) then have "\y\s n. dist y l < e" - apply (rule_tac x="t (max n N)" in bexI) - using N - apply auto - done + using N max.cobounded2 by blast } then have "l \ s n" using closed_approachable[of "s n" l] assms(1) by auto @@ -1495,11 +1486,7 @@ have *: "f ` s \ cball 0 b" using assms(2)[unfolded mem_cball_0[symmetric]] by auto show ?thesis - using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3) - unfolding subset_eq - apply (erule_tac x="f x" in ballE) - apply (auto simp: dist_norm) - done + by (meson "*" assms(1) assms(3) closed_cball image_closure_subset image_subset_iff mem_cball_0) qed lemma isCont_indicator: