# HG changeset patch # User boehmes # Date 1291150455 -3600 # Node ID edd1e0764da1f4ae69c0063377823acd856a89ef # Parent 47ff261431c46a91cca93df91aabe2da16ff617e# Parent abbc05c20e243a99b78fba6c547abb6d0052f5dd merged diff -r 47ff261431c4 -r edd1e0764da1 NEWS --- a/NEWS Tue Nov 30 18:22:43 2010 +0100 +++ b/NEWS Tue Nov 30 21:54:15 2010 +0100 @@ -92,6 +92,9 @@ *** HOL *** +* Abandoned locale equiv for equivalence relations. INCOMPATIBILITY: use +equivI rather than equiv_intro. + * Code generator: globbing constant expressions "*" and "Theory.*" have been replaced by the more idiomatic "_" and "Theory._". INCOMPATIBILITY. diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Algebra/Coset.thy Tue Nov 30 21:54:15 2010 +0100 @@ -606,7 +606,7 @@ proof - interpret group G by fact show ?thesis - proof (intro equiv.intro) + proof (intro equivI) show "refl_on (carrier G) (rcong H)" by (auto simp add: r_congruent_def refl_on_def) next diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Equiv_Relations.thy --- a/src/HOL/Equiv_Relations.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Equiv_Relations.thy Tue Nov 30 21:54:15 2010 +0100 @@ -8,13 +8,19 @@ imports Big_Operators Relation Plain begin -subsection {* Equivalence relations *} +subsection {* Equivalence relations -- set version *} + +definition equiv :: "'a set \ ('a \ 'a) set \ bool" where + "equiv A r \ refl_on A r \ sym r \ trans r" -locale equiv = - fixes A and r - assumes refl_on: "refl_on A r" - and sym: "sym r" - and trans: "trans r" +lemma equivI: + "refl_on A r \ sym r \ trans r \ equiv A r" + by (simp add: equiv_def) + +lemma equivE: + assumes "equiv A r" + obtains "refl_on A r" and "sym r" and "trans r" + using assms by (simp add: equiv_def) text {* Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\ O @@ -157,9 +163,17 @@ subsection {* Defining unary operations upon equivalence classes *} text{*A congruence-preserving function*} -locale congruent = - fixes r and f - assumes congruent: "(y,z) \ r ==> f y = f z" + +definition congruent :: "('a \ 'a \ bool) \ ('a \ 'b) \ bool" where + "congruent r f \ (\(y, z) \ r. f y = f z)" + +lemma congruentI: + "(\y z. (y, z) \ r \ f y = f z) \ congruent r f" + by (auto simp add: congruent_def) + +lemma congruentD: + "congruent r f \ (y, z) \ r \ f y = f z" + by (auto simp add: congruent_def) abbreviation RESPECTS :: "('a => 'b) => ('a * 'a) set => bool" @@ -214,10 +228,18 @@ subsection {* Defining binary operations upon equivalence classes *} text{*A congruence-preserving function of two arguments*} -locale congruent2 = - fixes r1 and r2 and f - assumes congruent2: - "(y1,z1) \ r1 ==> (y2,z2) \ r2 ==> f y1 y2 = f z1 z2" + +definition congruent2 :: "('a \ 'a \ bool) \ ('b \ 'b \ bool) \ ('a \ 'b \ 'c) \ bool" where + "congruent2 r1 r2 f \ (\(y1, z1) \ r1. \(y2, z2) \ r2. f y1 y2 = f z1 z2)" + +lemma congruent2I': + assumes "\y1 z1 y2 z2. (y1, z1) \ r1 \ (y2, z2) \ r2 \ f y1 y2 = f z1 z2" + shows "congruent2 r1 r2 f" + using assms by (auto simp add: congruent2_def) + +lemma congruent2D: + "congruent2 r1 r2 f \ (y1, z1) \ r1 \ (y2, z2) \ r2 \ f y1 y2 = f z1 z2" + using assms by (auto simp add: congruent2_def) text{*Abbreviation for the common case where the relations are identical*} abbreviation @@ -331,4 +353,99 @@ apply simp done + +subsection {* Equivalence relations -- predicate version *} + +text {* Partial equivalences *} + +definition part_equivp :: "('a \ 'a \ bool) \ bool" where + "part_equivp R \ (\x. R x x) \ (\x y. R x y \ R x x \ R y y \ R x = R y)" + -- {* John-Harrison-style characterization *} + +lemma part_equivpI: + "(\x. R x x) \ symp R \ transp R \ part_equivp R" + by (auto simp add: part_equivp_def mem_def) (auto elim: sympE transpE) + +lemma part_equivpE: + assumes "part_equivp R" + obtains x where "R x x" and "symp R" and "transp R" +proof - + from assms have 1: "\x. R x x" + and 2: "\x y. R x y \ R x x \ R y y \ R x = R y" + by (unfold part_equivp_def) blast+ + from 1 obtain x where "R x x" .. + moreover have "symp R" + proof (rule sympI) + fix x y + assume "R x y" + with 2 [of x y] show "R y x" by auto + qed + moreover have "transp R" + proof (rule transpI) + fix x y z + assume "R x y" and "R y z" + with 2 [of x y] 2 [of y z] show "R x z" by auto + qed + ultimately show thesis by (rule that) +qed + +lemma part_equivp_refl_symp_transp: + "part_equivp R \ (\x. R x x) \ symp R \ transp R" + by (auto intro: part_equivpI elim: part_equivpE) + +lemma part_equivp_symp: + "part_equivp R \ R x y \ R y x" + by (erule part_equivpE, erule sympE) + +lemma part_equivp_transp: + "part_equivp R \ R x y \ R y z \ R x z" + by (erule part_equivpE, erule transpE) + +lemma part_equivp_typedef: + "part_equivp R \ \d. d \ (\c. \x. R x x \ c = R x)" + by (auto elim: part_equivpE simp add: mem_def) + + +text {* Total equivalences *} + +definition equivp :: "('a \ 'a \ bool) \ bool" where + "equivp R \ (\x y. R x y = (R x = R y))" -- {* John-Harrison-style characterization *} + +lemma equivpI: + "reflp R \ symp R \ transp R \ equivp R" + by (auto elim: reflpE sympE transpE simp add: equivp_def mem_def) + +lemma equivpE: + assumes "equivp R" + obtains "reflp R" and "symp R" and "transp R" + using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def) + +lemma equivp_implies_part_equivp: + "equivp R \ part_equivp R" + by (auto intro: part_equivpI elim: equivpE reflpE) + +lemma equivp_equiv: + "equiv UNIV A \ equivp (\x y. (x, y) \ A)" + by (auto intro: equivpI elim: equivpE simp add: equiv_def reflp_def symp_def transp_def) + +lemma equivp_reflp_symp_transp: + shows "equivp R \ reflp R \ symp R \ transp R" + by (auto intro: equivpI elim: equivpE) + +lemma identity_equivp: + "equivp (op =)" + by (auto intro: equivpI reflpI sympI transpI) + +lemma equivp_reflp: + "equivp R \ R x x" + by (erule equivpE, erule reflpE) + +lemma equivp_symp: + "equivp R \ R x y \ R y x" + by (erule equivpE, erule sympE) + +lemma equivp_transp: + "equivp R \ R x y \ R y z \ R x z" + by (erule equivpE, erule transpE) + end diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/HOLCF/Library/List_Cpo.thy --- a/src/HOL/HOLCF/Library/List_Cpo.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/HOLCF/Library/List_Cpo.thy Tue Nov 30 21:54:15 2010 +0100 @@ -237,6 +237,54 @@ deserve to have continuity lemmas. I'll add more as they are needed. *} +subsection {* Lists are a discrete cpo *} + +instance list :: (discrete_cpo) discrete_cpo +proof + fix xs ys :: "'a list" + show "xs \ ys \ xs = ys" + by (induct xs arbitrary: ys, case_tac [!] ys, simp_all) +qed + +subsection {* Compactness and chain-finiteness *} + +lemma compact_Nil [simp]: "compact []" +apply (rule compactI2) +apply (erule list_chain_cases) +apply simp +apply (simp add: lub_Cons) +done + +lemma compact_Cons: "\compact x; compact xs\ \ compact (x # xs)" +apply (rule compactI2) +apply (erule list_chain_cases) +apply (auto simp add: lub_Cons dest!: compactD2) +apply (rename_tac i j, rule_tac x="max i j" in exI) +apply (drule (1) below_trans [OF _ chain_mono [OF _ le_maxI1]]) +apply (drule (1) below_trans [OF _ chain_mono [OF _ le_maxI2]]) +apply (erule (1) conjI) +done + +lemma compact_Cons_iff [simp]: + "compact (x # xs) \ compact x \ compact xs" +apply (safe intro!: compact_Cons) +apply (simp only: compact_def) +apply (subgoal_tac "cont (\x. x # xs)") +apply (drule (1) adm_subst, simp, simp) +apply (simp only: compact_def) +apply (subgoal_tac "cont (\xs. x # xs)") +apply (drule (1) adm_subst, simp, simp) +done + +instance list :: (chfin) chfin +proof + fix Y :: "nat \ 'a list" assume "chain Y" + moreover have "\(xs::'a list). compact xs" + by (induct_tac xs, simp_all) + ultimately show "\i. max_in_chain i Y" + by (rule compact_imp_max_in_chain) +qed + subsection {* Using lists with fixrec *} definition diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Induct/QuoDataType.thy --- a/src/HOL/Induct/QuoDataType.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Induct/QuoDataType.thy Tue Nov 30 21:54:15 2010 +0100 @@ -176,7 +176,7 @@ Abs_Msg (msgrel``{MPAIR U V})" proof - have "(\U V. msgrel `` {MPAIR U V}) respects2 msgrel" - by (simp add: congruent2_def msgrel.MPAIR) + by (auto simp add: congruent2_def msgrel.MPAIR) thus ?thesis by (simp add: MPair_def UN_equiv_class2 [OF equiv_msgrel equiv_msgrel]) qed @@ -184,7 +184,7 @@ lemma Crypt: "Crypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{CRYPT K U})" proof - have "(\U. msgrel `` {CRYPT K U}) respects msgrel" - by (simp add: congruent_def msgrel.CRYPT) + by (auto simp add: congruent_def msgrel.CRYPT) thus ?thesis by (simp add: Crypt_def UN_equiv_class [OF equiv_msgrel]) qed @@ -193,7 +193,7 @@ "Decrypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{DECRYPT K U})" proof - have "(\U. msgrel `` {DECRYPT K U}) respects msgrel" - by (simp add: congruent_def msgrel.DECRYPT) + by (auto simp add: congruent_def msgrel.DECRYPT) thus ?thesis by (simp add: Decrypt_def UN_equiv_class [OF equiv_msgrel]) qed @@ -221,7 +221,7 @@ "nonces X = (\U \ Rep_Msg X. freenonces U)" lemma nonces_congruent: "freenonces respects msgrel" -by (simp add: congruent_def msgrel_imp_eq_freenonces) +by (auto simp add: congruent_def msgrel_imp_eq_freenonces) text{*Now prove the four equations for @{term nonces}*} @@ -256,7 +256,7 @@ "left X = Abs_Msg (\U \ Rep_Msg X. msgrel``{freeleft U})" lemma left_congruent: "(\U. msgrel `` {freeleft U}) respects msgrel" -by (simp add: congruent_def msgrel_imp_eqv_freeleft) +by (auto simp add: congruent_def msgrel_imp_eqv_freeleft) text{*Now prove the four equations for @{term left}*} @@ -290,7 +290,7 @@ "right X = Abs_Msg (\U \ Rep_Msg X. msgrel``{freeright U})" lemma right_congruent: "(\U. msgrel `` {freeright U}) respects msgrel" -by (simp add: congruent_def msgrel_imp_eqv_freeright) +by (auto simp add: congruent_def msgrel_imp_eqv_freeright) text{*Now prove the four equations for @{term right}*} @@ -425,7 +425,7 @@ "discrim X = the_elem (\U \ Rep_Msg X. {freediscrim U})" lemma discrim_congruent: "(\U. {freediscrim U}) respects msgrel" -by (simp add: congruent_def msgrel_imp_eq_freediscrim) +by (auto simp add: congruent_def msgrel_imp_eq_freediscrim) text{*Now prove the four equations for @{term discrim}*} diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Induct/QuoNestedDataType.thy --- a/src/HOL/Induct/QuoNestedDataType.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Induct/QuoNestedDataType.thy Tue Nov 30 21:54:15 2010 +0100 @@ -125,14 +125,19 @@ | "freeargs (FNCALL F Xs) = Xs" theorem exprel_imp_eqv_freeargs: - "U \ V \ (freeargs U, freeargs V) \ listrel exprel" -apply (induct set: exprel) -apply (erule_tac [4] listrel.induct) -apply (simp_all add: listrel.intros) -apply (blast intro: symD [OF equiv.sym [OF equiv_list_exprel]]) -apply (blast intro: transD [OF equiv.trans [OF equiv_list_exprel]]) -done - + assumes "U \ V" + shows "(freeargs U, freeargs V) \ listrel exprel" +proof - + from equiv_list_exprel have sym: "sym (listrel exprel)" by (rule equivE) + from equiv_list_exprel have trans: "trans (listrel exprel)" by (rule equivE) + from assms show ?thesis + apply induct + apply (erule_tac [4] listrel.induct) + apply (simp_all add: listrel.intros) + apply (blast intro: symD [OF sym]) + apply (blast intro: transD [OF trans]) + done +qed subsection{*The Initial Algebra: A Quotiented Message Type*} @@ -220,7 +225,7 @@ Abs_Exp (exprel``{PLUS U V})" proof - have "(\U V. exprel `` {PLUS U V}) respects2 exprel" - by (simp add: congruent2_def exprel.PLUS) + by (auto simp add: congruent2_def exprel.PLUS) thus ?thesis by (simp add: Plus_def UN_equiv_class2 [OF equiv_exprel equiv_exprel]) qed @@ -236,13 +241,13 @@ lemma FnCall_respects: "(\Us. exprel `` {FNCALL F Us}) respects (listrel exprel)" - by (simp add: congruent_def exprel.FNCALL) + by (auto simp add: congruent_def exprel.FNCALL) lemma FnCall_sing: "FnCall F [Abs_Exp(exprel``{U})] = Abs_Exp (exprel``{FNCALL F [U]})" proof - have "(\U. exprel `` {FNCALL F [U]}) respects exprel" - by (simp add: congruent_def FNCALL_Cons listrel.intros) + by (auto simp add: congruent_def FNCALL_Cons listrel.intros) thus ?thesis by (simp add: FnCall_def UN_equiv_class [OF equiv_exprel]) qed @@ -255,7 +260,7 @@ "FnCall F (Abs_ExpList Us) = Abs_Exp (exprel``{FNCALL F Us})" proof - have "(\Us. exprel `` {FNCALL F Us}) respects (listrel exprel)" - by (simp add: congruent_def exprel.FNCALL) + by (auto simp add: congruent_def exprel.FNCALL) thus ?thesis by (simp add: FnCall_def UN_equiv_class [OF equiv_list_exprel] listset_Rep_Exp_Abs_Exp) @@ -275,7 +280,7 @@ "vars X = (\U \ Rep_Exp X. freevars U)" lemma vars_respects: "freevars respects exprel" -by (simp add: congruent_def exprel_imp_eq_freevars) +by (auto simp add: congruent_def exprel_imp_eq_freevars) text{*The extension of the function @{term vars} to lists*} primrec vars_list :: "exp list \ nat set" where @@ -340,7 +345,7 @@ "fun X = the_elem (\U \ Rep_Exp X. {freefun U})" lemma fun_respects: "(%U. {freefun U}) respects exprel" -by (simp add: congruent_def exprel_imp_eq_freefun) +by (auto simp add: congruent_def exprel_imp_eq_freefun) lemma fun_FnCall [simp]: "fun (FnCall F Xs) = F" apply (cases Xs rule: eq_Abs_ExpList) @@ -358,7 +363,7 @@ by (induct set: listrel) simp_all lemma args_respects: "(%U. {Abs_ExpList (freeargs U)}) respects exprel" -by (simp add: congruent_def Abs_ExpList_eq exprel_imp_eqv_freeargs) +by (auto simp add: congruent_def Abs_ExpList_eq exprel_imp_eqv_freeargs) lemma args_FnCall [simp]: "args (FnCall F Xs) = Xs" apply (cases Xs rule: eq_Abs_ExpList) @@ -387,7 +392,7 @@ "discrim X = the_elem (\U \ Rep_Exp X. {freediscrim U})" lemma discrim_respects: "(\U. {freediscrim U}) respects exprel" -by (simp add: congruent_def exprel_imp_eq_freediscrim) +by (auto simp add: congruent_def exprel_imp_eq_freediscrim) text{*Now prove the four equations for @{term discrim}*} diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Int.thy --- a/src/HOL/Int.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Int.thy Tue Nov 30 21:54:15 2010 +0100 @@ -102,7 +102,7 @@ lemma minus: "- Abs_Integ(intrel``{(x,y)}) = Abs_Integ(intrel `` {(y,x)})" proof - have "(\(x,y). intrel``{(y,x)}) respects intrel" - by (simp add: congruent_def) + by (auto simp add: congruent_def) thus ?thesis by (simp add: minus_int_def UN_equiv_class [OF equiv_intrel]) qed @@ -113,7 +113,7 @@ proof - have "(\z w. (\(x,y). (\(u,v). intrel `` {(x+u, y+v)}) w) z) respects2 intrel" - by (simp add: congruent2_def) + by (auto simp add: congruent2_def) thus ?thesis by (simp add: add_int_def UN_UN_split_split_eq UN_equiv_class2 [OF equiv_intrel equiv_intrel]) @@ -288,7 +288,7 @@ lemma of_int: "of_int (Abs_Integ (intrel `` {(i,j)})) = of_nat i - of_nat j" proof - have "(\(i,j). { of_nat i - (of_nat j :: 'a) }) respects intrel" - by (simp add: congruent_def algebra_simps of_nat_add [symmetric] + by (auto simp add: congruent_def) (simp add: algebra_simps of_nat_add [symmetric] del: of_nat_add) thus ?thesis by (simp add: of_int_def UN_equiv_class [OF equiv_intrel]) @@ -394,7 +394,7 @@ lemma nat: "nat (Abs_Integ (intrel``{(x,y)})) = x-y" proof - have "(\(x,y). {x-y}) respects intrel" - by (simp add: congruent_def) arith + by (auto simp add: congruent_def) thus ?thesis by (simp add: nat_def UN_equiv_class [OF equiv_intrel]) qed diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Library/Fraction_Field.thy --- a/src/HOL/Library/Fraction_Field.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Library/Fraction_Field.thy Tue Nov 30 21:54:15 2010 +0100 @@ -43,7 +43,7 @@ qed lemma equiv_fractrel: "equiv {x. snd x \ 0} fractrel" - by (rule equiv.intro [OF refl_fractrel sym_fractrel trans_fractrel]) + by (rule equivI [OF refl_fractrel sym_fractrel trans_fractrel]) lemmas UN_fractrel = UN_equiv_class [OF equiv_fractrel] lemmas UN_fractrel2 = UN_equiv_class2 [OF equiv_fractrel equiv_fractrel] @@ -121,7 +121,7 @@ lemma minus_fract [simp, code]: "- Fract a b = Fract (- a) (b::'a::idom)" proof - have "(\x. fractrel `` {(- fst x, snd x :: 'a)}) respects fractrel" - by (simp add: congruent_def) + by (simp add: congruent_def split_paired_all) then show ?thesis by (simp add: Fract_def minus_fract_def UN_fractrel) qed diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Library/Quotient_List.thy --- a/src/HOL/Library/Quotient_List.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Library/Quotient_List.thy Tue Nov 30 21:54:15 2010 +0100 @@ -10,94 +10,96 @@ declare [[map list = (map, list_all2)]] -lemma split_list_all: - shows "(\x. P x) \ P [] \ (\x xs. P (x#xs))" - apply(auto) - apply(case_tac x) - apply(simp_all) - done +lemma map_id [id_simps]: + "map id = id" + by (simp add: id_def fun_eq_iff map.identity) -lemma map_id[id_simps]: - shows "map id = id" - apply(simp add: fun_eq_iff) - apply(rule allI) - apply(induct_tac x) - apply(simp_all) - done +lemma list_all2_map1: + "list_all2 R (map f xs) ys \ list_all2 (\x. R (f x)) xs ys" + by (induct xs ys rule: list_induct2') simp_all + +lemma list_all2_map2: + "list_all2 R xs (map f ys) \ list_all2 (\x y. R x (f y)) xs ys" + by (induct xs ys rule: list_induct2') simp_all -lemma list_all2_reflp: - shows "equivp R \ list_all2 R xs xs" - by (induct xs, simp_all add: equivp_reflp) +lemma list_all2_eq [id_simps]: + "list_all2 (op =) = (op =)" +proof (rule ext)+ + fix xs ys + show "list_all2 (op =) xs ys \ xs = ys" + by (induct xs ys rule: list_induct2') simp_all +qed -lemma list_all2_symp: - assumes a: "equivp R" - and b: "list_all2 R xs ys" - shows "list_all2 R ys xs" - using list_all2_lengthD[OF b] b - apply(induct xs ys rule: list_induct2) - apply(simp_all) - apply(rule equivp_symp[OF a]) - apply(simp) - done +lemma list_reflp: + assumes "reflp R" + shows "reflp (list_all2 R)" +proof (rule reflpI) + from assms have *: "\xs. R xs xs" by (rule reflpE) + fix xs + show "list_all2 R xs xs" + by (induct xs) (simp_all add: *) +qed -lemma list_all2_transp: - assumes a: "equivp R" - and b: "list_all2 R xs1 xs2" - and c: "list_all2 R xs2 xs3" - shows "list_all2 R xs1 xs3" - using list_all2_lengthD[OF b] list_all2_lengthD[OF c] b c - apply(induct rule: list_induct3) - apply(simp_all) - apply(auto intro: equivp_transp[OF a]) - done +lemma list_symp: + assumes "symp R" + shows "symp (list_all2 R)" +proof (rule sympI) + from assms have *: "\xs ys. R xs ys \ R ys xs" by (rule sympE) + fix xs ys + assume "list_all2 R xs ys" + then show "list_all2 R ys xs" + by (induct xs ys rule: list_induct2') (simp_all add: *) +qed -lemma list_equivp[quot_equiv]: - assumes a: "equivp R" - shows "equivp (list_all2 R)" - apply (intro equivpI) - unfolding reflp_def symp_def transp_def - apply(simp add: list_all2_reflp[OF a]) - apply(blast intro: list_all2_symp[OF a]) - apply(blast intro: list_all2_transp[OF a]) - done +lemma list_transp: + assumes "transp R" + shows "transp (list_all2 R)" +proof (rule transpI) + from assms have *: "\xs ys zs. R xs ys \ R ys zs \ R xs zs" by (rule transpE) + fix xs ys zs + assume A: "list_all2 R xs ys" "list_all2 R ys zs" + then have "length xs = length ys" "length ys = length zs" by (blast dest: list_all2_lengthD)+ + then show "list_all2 R xs zs" using A + by (induct xs ys zs rule: list_induct3) (auto intro: *) +qed -lemma list_all2_rel: - assumes q: "Quotient R Abs Rep" - shows "list_all2 R r s = (list_all2 R r r \ list_all2 R s s \ (map Abs r = map Abs s))" - apply(induct r s rule: list_induct2') - apply(simp_all) - using Quotient_rel[OF q] - apply(metis) - done +lemma list_equivp [quot_equiv]: + "equivp R \ equivp (list_all2 R)" + by (blast intro: equivpI list_reflp list_symp list_transp elim: equivpE) -lemma list_quotient[quot_thm]: - assumes q: "Quotient R Abs Rep" +lemma list_quotient [quot_thm]: + assumes "Quotient R Abs Rep" shows "Quotient (list_all2 R) (map Abs) (map Rep)" - unfolding Quotient_def - apply(subst split_list_all) - apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id) - apply(intro conjI allI) - apply(induct_tac a) - apply(simp_all add: Quotient_rep_reflp[OF q]) - apply(rule list_all2_rel[OF q]) - done +proof (rule QuotientI) + from assms have "\x. Abs (Rep x) = x" by (rule Quotient_abs_rep) + then show "\xs. map Abs (map Rep xs) = xs" by (simp add: comp_def) +next + from assms have "\x y. R (Rep x) (Rep y) \ x = y" by (rule Quotient_rel_rep) + then show "\xs. list_all2 R (map Rep xs) (map Rep xs)" + by (simp add: list_all2_map1 list_all2_map2 list_all2_eq) +next + fix xs ys + from assms have "\x y. R x x \ R y y \ Abs x = Abs y \ R x y" by (rule Quotient_rel) + then show "list_all2 R xs ys \ list_all2 R xs xs \ list_all2 R ys ys \ map Abs xs = map Abs ys" + by (induct xs ys rule: list_induct2') auto +qed -lemma cons_prs[quot_preserve]: +lemma cons_prs [quot_preserve]: assumes q: "Quotient R Abs Rep" shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" by (auto simp add: fun_eq_iff comp_def Quotient_abs_rep [OF q]) -lemma cons_rsp[quot_respect]: +lemma cons_rsp [quot_respect]: assumes q: "Quotient R Abs Rep" shows "(R ===> list_all2 R ===> list_all2 R) (op #) (op #)" by auto -lemma nil_prs[quot_preserve]: +lemma nil_prs [quot_preserve]: assumes q: "Quotient R Abs Rep" shows "map Abs [] = []" by simp -lemma nil_rsp[quot_respect]: +lemma nil_rsp [quot_respect]: assumes q: "Quotient R Abs Rep" shows "list_all2 R [] []" by simp @@ -109,7 +111,7 @@ by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) -lemma map_prs[quot_preserve]: +lemma map_prs [quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" @@ -117,8 +119,7 @@ by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) - -lemma map_rsp[quot_respect]: +lemma map_rsp [quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map" @@ -137,7 +138,7 @@ shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) -lemma foldr_prs[quot_preserve]: +lemma foldr_prs [quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" @@ -151,8 +152,7 @@ shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) - -lemma foldl_prs[quot_preserve]: +lemma foldl_prs [quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" @@ -217,11 +217,11 @@ qed qed -lemma[quot_respect]: +lemma [quot_respect]: "((R ===> R ===> op =) ===> list_all2 R ===> list_all2 R ===> op =) list_all2 list_all2" by (simp add: list_all2_rsp fun_rel_def) -lemma[quot_preserve]: +lemma [quot_preserve]: assumes a: "Quotient R abs1 rep1" shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2" apply (simp add: fun_eq_iff) @@ -230,19 +230,11 @@ apply (simp_all add: Quotient_abs_rep[OF a]) done -lemma[quot_preserve]: +lemma [quot_preserve]: assumes a: "Quotient R abs1 rep1" shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" by (induct l m rule: list_induct2') (simp_all add: Quotient_rel_rep[OF a]) -lemma list_all2_eq[id_simps]: - shows "(list_all2 (op =)) = (op =)" - unfolding fun_eq_iff - apply(rule allI)+ - apply(induct_tac x xa rule: list_induct2') - apply(simp_all) - done - lemma list_all2_find_element: assumes a: "x \ set a" and b: "list_all2 R a b" diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Library/Quotient_Option.thy --- a/src/HOL/Library/Quotient_Option.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Library/Quotient_Option.thy Tue Nov 30 21:54:15 2010 +0100 @@ -18,64 +18,73 @@ declare [[map option = (Option.map, option_rel)]] -text {* should probably be in Option.thy *} -lemma split_option_all: - shows "(\x. P x) \ P None \ (\a. P (Some a))" - apply(auto) - apply(case_tac x) - apply(simp_all) +lemma option_rel_unfold: + "option_rel R x y = (case (x, y) of (None, None) \ True + | (Some x, Some y) \ R x y + | _ \ False)" + by (cases x) (cases y, simp_all)+ + +lemma option_rel_map1: + "option_rel R (Option.map f x) y \ option_rel (\x. R (f x)) x y" + by (simp add: option_rel_unfold split: option.split) + +lemma option_rel_map2: + "option_rel R x (Option.map f y) \ option_rel (\x y. R x (f y)) x y" + by (simp add: option_rel_unfold split: option.split) + +lemma option_map_id [id_simps]: + "Option.map id = id" + by (simp add: id_def Option.map.identity fun_eq_iff) + +lemma option_rel_eq [id_simps]: + "option_rel (op =) = (op =)" + by (simp add: option_rel_unfold fun_eq_iff split: option.split) + +lemma option_reflp: + "reflp R \ reflp (option_rel R)" + by (auto simp add: option_rel_unfold split: option.splits intro!: reflpI elim: reflpE) + +lemma option_symp: + "symp R \ symp (option_rel R)" + by (auto simp add: option_rel_unfold split: option.splits intro!: sympI elim: sympE) + +lemma option_transp: + "transp R \ transp (option_rel R)" + by (auto simp add: option_rel_unfold split: option.splits intro!: transpI elim: transpE) + +lemma option_equivp [quot_equiv]: + "equivp R \ equivp (option_rel R)" + by (blast intro: equivpI option_reflp option_symp option_transp elim: equivpE) + +lemma option_quotient [quot_thm]: + assumes "Quotient R Abs Rep" + shows "Quotient (option_rel R) (Option.map Abs) (Option.map Rep)" + apply (rule QuotientI) + apply (simp_all add: Option.map.compositionality Option.map.identity option_rel_eq option_rel_map1 option_rel_map2 Quotient_abs_rep [OF assms] Quotient_rel_rep [OF assms]) + using Quotient_rel [OF assms] + apply (simp add: option_rel_unfold split: option.split) done -lemma option_quotient[quot_thm]: - assumes q: "Quotient R Abs Rep" - shows "Quotient (option_rel R) (Option.map Abs) (Option.map Rep)" - unfolding Quotient_def - apply(simp add: split_option_all) - apply(simp add: Quotient_abs_rep[OF q] Quotient_rel_rep[OF q]) - using q - unfolding Quotient_def - apply(blast) - done - -lemma option_equivp[quot_equiv]: - assumes a: "equivp R" - shows "equivp (option_rel R)" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(simp_all add: split_option_all) - apply(blast intro: equivp_reflp[OF a]) - apply(blast intro: equivp_symp[OF a]) - apply(blast intro: equivp_transp[OF a]) - done - -lemma option_None_rsp[quot_respect]: +lemma option_None_rsp [quot_respect]: assumes q: "Quotient R Abs Rep" shows "option_rel R None None" by simp -lemma option_Some_rsp[quot_respect]: +lemma option_Some_rsp [quot_respect]: assumes q: "Quotient R Abs Rep" shows "(R ===> option_rel R) Some Some" by auto -lemma option_None_prs[quot_preserve]: +lemma option_None_prs [quot_preserve]: assumes q: "Quotient R Abs Rep" shows "Option.map Abs None = None" by simp -lemma option_Some_prs[quot_preserve]: +lemma option_Some_prs [quot_preserve]: assumes q: "Quotient R Abs Rep" shows "(Rep ---> Option.map Abs) Some = Some" apply(simp add: fun_eq_iff) apply(simp add: Quotient_abs_rep[OF q]) done -lemma option_map_id[id_simps]: - shows "Option.map id = id" - by (simp add: fun_eq_iff split_option_all) - -lemma option_rel_eq[id_simps]: - shows "option_rel (op =) = (op =)" - by (simp add: fun_eq_iff split_option_all) - end diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Library/Quotient_Product.thy --- a/src/HOL/Library/Quotient_Product.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Library/Quotient_Product.thy Tue Nov 30 21:54:15 2010 +0100 @@ -19,38 +19,39 @@ "prod_rel R1 R2 (a, b) (c, d) \ R1 a c \ R2 b d" by (simp add: prod_rel_def) -lemma prod_equivp[quot_equiv]: - assumes a: "equivp R1" - assumes b: "equivp R2" +lemma map_pair_id [id_simps]: + shows "map_pair id id = id" + by (simp add: fun_eq_iff) + +lemma prod_rel_eq [id_simps]: + shows "prod_rel (op =) (op =) = (op =)" + by (simp add: fun_eq_iff) + +lemma prod_equivp [quot_equiv]: + assumes "equivp R1" + assumes "equivp R2" shows "equivp (prod_rel R1 R2)" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(simp_all add: split_paired_all prod_rel_def) - apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b]) - apply(blast intro: equivp_symp[OF a] equivp_symp[OF b]) - apply(blast intro: equivp_transp[OF a] equivp_transp[OF b]) + using assms by (auto intro!: equivpI reflpI sympI transpI elim!: equivpE elim: reflpE sympE transpE) + +lemma prod_quotient [quot_thm]: + assumes "Quotient R1 Abs1 Rep1" + assumes "Quotient R2 Abs2 Rep2" + shows "Quotient (prod_rel R1 R2) (map_pair Abs1 Abs2) (map_pair Rep1 Rep2)" + apply (rule QuotientI) + apply (simp add: map_pair.compositionality map_pair.identity + Quotient_abs_rep [OF assms(1)] Quotient_abs_rep [OF assms(2)]) + apply (simp add: split_paired_all Quotient_rel_rep [OF assms(1)] Quotient_rel_rep [OF assms(2)]) + using Quotient_rel [OF assms(1)] Quotient_rel [OF assms(2)] + apply (auto simp add: split_paired_all) done -lemma prod_quotient[quot_thm]: - assumes q1: "Quotient R1 Abs1 Rep1" - assumes q2: "Quotient R2 Abs2 Rep2" - shows "Quotient (prod_rel R1 R2) (map_pair Abs1 Abs2) (map_pair Rep1 Rep2)" - unfolding Quotient_def - apply(simp add: split_paired_all) - apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]) - apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2]) - using q1 q2 - unfolding Quotient_def - apply(blast) - done - -lemma Pair_rsp[quot_respect]: +lemma Pair_rsp [quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair" by (auto simp add: prod_rel_def) -lemma Pair_prs[quot_preserve]: +lemma Pair_prs [quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(Rep1 ---> Rep2 ---> (map_pair Abs1 Abs2)) Pair = Pair" @@ -58,35 +59,35 @@ apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) done -lemma fst_rsp[quot_respect]: +lemma fst_rsp [quot_respect]: assumes "Quotient R1 Abs1 Rep1" assumes "Quotient R2 Abs2 Rep2" shows "(prod_rel R1 R2 ===> R1) fst fst" by auto -lemma fst_prs[quot_preserve]: +lemma fst_prs [quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(map_pair Rep1 Rep2 ---> Abs1) fst = fst" by (simp add: fun_eq_iff Quotient_abs_rep[OF q1]) -lemma snd_rsp[quot_respect]: +lemma snd_rsp [quot_respect]: assumes "Quotient R1 Abs1 Rep1" assumes "Quotient R2 Abs2 Rep2" shows "(prod_rel R1 R2 ===> R2) snd snd" by auto -lemma snd_prs[quot_preserve]: +lemma snd_prs [quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(map_pair Rep1 Rep2 ---> Abs2) snd = snd" by (simp add: fun_eq_iff Quotient_abs_rep[OF q2]) -lemma split_rsp[quot_respect]: +lemma split_rsp [quot_respect]: shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split" by (auto intro!: fun_relI elim!: fun_relE) -lemma split_prs[quot_preserve]: +lemma split_prs [quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "(((Abs1 ---> Abs2 ---> id) ---> map_pair Rep1 Rep2 ---> id) split) = split" @@ -111,12 +112,4 @@ declare Pair_eq[quot_preserve] -lemma map_pair_id[id_simps]: - shows "map_pair id id = id" - by (simp add: fun_eq_iff) - -lemma prod_rel_eq[id_simps]: - shows "prod_rel (op =) (op =) = (op =)" - by (simp add: fun_eq_iff) - end diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Library/Quotient_Sum.thy --- a/src/HOL/Library/Quotient_Sum.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Library/Quotient_Sum.thy Tue Nov 30 21:54:15 2010 +0100 @@ -18,53 +18,68 @@ declare [[map sum = (sum_map, sum_rel)]] +lemma sum_rel_unfold: + "sum_rel R1 R2 x y = (case (x, y) of (Inl x, Inl y) \ R1 x y + | (Inr x, Inr y) \ R2 x y + | _ \ False)" + by (cases x) (cases y, simp_all)+ -text {* should probably be in @{theory Sum_Type} *} -lemma split_sum_all: - shows "(\x. P x) \ (\x. P (Inl x)) \ (\x. P (Inr x))" - apply(auto) - apply(case_tac x) - apply(simp_all) - done +lemma sum_rel_map1: + "sum_rel R1 R2 (sum_map f1 f2 x) y \ sum_rel (\x. R1 (f1 x)) (\x. R2 (f2 x)) x y" + by (simp add: sum_rel_unfold split: sum.split) + +lemma sum_rel_map2: + "sum_rel R1 R2 x (sum_map f1 f2 y) \ sum_rel (\x y. R1 x (f1 y)) (\x y. R2 x (f2 y)) x y" + by (simp add: sum_rel_unfold split: sum.split) + +lemma sum_map_id [id_simps]: + "sum_map id id = id" + by (simp add: id_def sum_map.identity fun_eq_iff) -lemma sum_equivp[quot_equiv]: - assumes a: "equivp R1" - assumes b: "equivp R2" - shows "equivp (sum_rel R1 R2)" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(simp_all add: split_sum_all) - apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b]) - apply(blast intro: equivp_symp[OF a] equivp_symp[OF b]) - apply(blast intro: equivp_transp[OF a] equivp_transp[OF b]) - done +lemma sum_rel_eq [id_simps]: + "sum_rel (op =) (op =) = (op =)" + by (simp add: sum_rel_unfold fun_eq_iff split: sum.split) + +lemma sum_reflp: + "reflp R1 \ reflp R2 \ reflp (sum_rel R1 R2)" + by (auto simp add: sum_rel_unfold split: sum.splits intro!: reflpI elim: reflpE) -lemma sum_quotient[quot_thm]: +lemma sum_symp: + "symp R1 \ symp R2 \ symp (sum_rel R1 R2)" + by (auto simp add: sum_rel_unfold split: sum.splits intro!: sympI elim: sympE) + +lemma sum_transp: + "transp R1 \ transp R2 \ transp (sum_rel R1 R2)" + by (auto simp add: sum_rel_unfold split: sum.splits intro!: transpI elim: transpE) + +lemma sum_equivp [quot_equiv]: + "equivp R1 \ equivp R2 \ equivp (sum_rel R1 R2)" + by (blast intro: equivpI sum_reflp sum_symp sum_transp elim: equivpE) + +lemma sum_quotient [quot_thm]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)" - unfolding Quotient_def - apply(simp add: split_sum_all) - apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]) - apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2]) - using q1 q2 - unfolding Quotient_def - apply(blast)+ + apply (rule QuotientI) + apply (simp_all add: sum_map.compositionality sum_map.identity sum_rel_eq sum_rel_map1 sum_rel_map2 + Quotient_abs_rep [OF q1] Quotient_rel_rep [OF q1] Quotient_abs_rep [OF q2] Quotient_rel_rep [OF q2]) + using Quotient_rel [OF q1] Quotient_rel [OF q2] + apply (simp add: sum_rel_unfold split: sum.split) done -lemma sum_Inl_rsp[quot_respect]: +lemma sum_Inl_rsp [quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(R1 ===> sum_rel R1 R2) Inl Inl" by auto -lemma sum_Inr_rsp[quot_respect]: +lemma sum_Inr_rsp [quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(R2 ===> sum_rel R1 R2) Inr Inr" by auto -lemma sum_Inl_prs[quot_preserve]: +lemma sum_Inl_prs [quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl" @@ -72,7 +87,7 @@ apply(simp add: Quotient_abs_rep[OF q1]) done -lemma sum_Inr_prs[quot_preserve]: +lemma sum_Inr_prs [quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr" @@ -80,12 +95,4 @@ apply(simp add: Quotient_abs_rep[OF q2]) done -lemma sum_map_id[id_simps]: - shows "sum_map id id = id" - by (simp add: fun_eq_iff split_sum_all) - -lemma sum_rel_eq[id_simps]: - shows "sum_rel (op =) (op =) = (op =)" - by (simp add: fun_eq_iff split_sum_all) - end diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/NSA/StarDef.thy --- a/src/HOL/NSA/StarDef.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/NSA/StarDef.thy Tue Nov 30 21:54:15 2010 +0100 @@ -62,7 +62,7 @@ by (simp add: starrel_def) lemma equiv_starrel: "equiv UNIV starrel" -proof (rule equiv.intro) +proof (rule equivI) show "refl starrel" by (simp add: refl_on_def) show "sym starrel" by (simp add: sym_def eq_commute) show "trans starrel" by (auto intro: transI elim!: ultra) diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Predicate.thy Tue Nov 30 21:54:15 2010 +0100 @@ -363,6 +363,44 @@ abbreviation single_valuedP :: "('a => 'b => bool) => bool" where "single_valuedP r == single_valued {(x, y). r x y}" +(*FIXME inconsistencies: abbreviations vs. definitions, suffix `P` vs. suffix `p`*) + +definition reflp :: "('a \ 'a \ bool) \ bool" where + "reflp r \ refl {(x, y). r x y}" + +definition symp :: "('a \ 'a \ bool) \ bool" where + "symp r \ sym {(x, y). r x y}" + +definition transp :: "('a \ 'a \ bool) \ bool" where + "transp r \ trans {(x, y). r x y}" + +lemma reflpI: + "(\x. r x x) \ reflp r" + by (auto intro: refl_onI simp add: reflp_def) + +lemma reflpE: + assumes "reflp r" + obtains "r x x" + using assms by (auto dest: refl_onD simp add: reflp_def) + +lemma sympI: + "(\x y. r x y \ r y x) \ symp r" + by (auto intro: symI simp add: symp_def) + +lemma sympE: + assumes "symp r" and "r x y" + obtains "r y x" + using assms by (auto dest: symD simp add: symp_def) + +lemma transpI: + "(\x y z. r x y \ r y z \ r x z) \ transp r" + by (auto intro: transI simp add: transp_def) + +lemma transpE: + assumes "transp r" and "r x y" and "r y z" + obtains "r x z" + using assms by (auto dest: transD simp add: transp_def) + subsection {* Predicates as enumerations *} diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Quotient.thy --- a/src/HOL/Quotient.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Quotient.thy Tue Nov 30 21:54:15 2010 +0100 @@ -14,131 +14,15 @@ ("Tools/Quotient/quotient_tacs.ML") begin - text {* Basic definition for equivalence relations that are represented by predicates. *} -definition - "reflp E \ (\x. E x x)" - -lemma refl_reflp: - "refl A \ reflp (\x y. (x, y) \ A)" - by (simp add: refl_on_def reflp_def) - -definition - "symp E \ (\x y. E x y \ E y x)" - -lemma sym_symp: - "sym A \ symp (\x y. (x, y) \ A)" - by (simp add: sym_def symp_def) - -definition - "transp E \ (\x y z. E x y \ E y z \ E x z)" - -lemma trans_transp: - "trans A \ transp (\x y. (x, y) \ A)" - by (auto simp add: trans_def transp_def) - -definition - "equivp E \ (\x y. E x y = (E x = E y))" - -lemma equivp_reflp_symp_transp: - shows "equivp E = (reflp E \ symp E \ transp E)" - unfolding equivp_def reflp_def symp_def transp_def fun_eq_iff - by blast - -lemma equiv_equivp: - "equiv UNIV A \ equivp (\x y. (x, y) \ A)" - by (simp add: equiv_def equivp_reflp_symp_transp refl_reflp sym_symp trans_transp) - -lemma equivp_reflp: - shows "equivp E \ E x x" - by (simp only: equivp_reflp_symp_transp reflp_def) - -lemma equivp_symp: - shows "equivp E \ E x y \ E y x" - by (simp add: equivp_def) - -lemma equivp_transp: - shows "equivp E \ E x y \ E y z \ E x z" - by (simp add: equivp_def) - -lemma equivpI: - assumes "reflp R" "symp R" "transp R" - shows "equivp R" - using assms by (simp add: equivp_reflp_symp_transp) - -lemma identity_equivp: - shows "equivp (op =)" - unfolding equivp_def - by auto - -text {* Partial equivalences *} - -definition - "part_equivp E \ (\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y)))" - -lemma equivp_implies_part_equivp: - assumes a: "equivp E" - shows "part_equivp E" - using a - unfolding equivp_def part_equivp_def - by auto - -lemma part_equivp_symp: - assumes e: "part_equivp R" - and a: "R x y" - shows "R y x" - using e[simplified part_equivp_def] a - by (metis) - -lemma part_equivp_typedef: - shows "part_equivp R \ \d. d \ (\c. \x. R x x \ c = R x)" - unfolding part_equivp_def mem_def - apply clarify - apply (intro exI) - apply (rule conjI) - apply assumption - apply (rule refl) - done - -lemma part_equivp_refl_symp_transp: - shows "part_equivp E \ ((\x. E x x) \ symp E \ transp E)" -proof - assume "part_equivp E" - then show "(\x. E x x) \ symp E \ transp E" - unfolding part_equivp_def symp_def transp_def - by metis -next - assume a: "(\x. E x x) \ symp E \ transp E" - then have b: "(\x y. E x y \ E y x)" and c: "(\x y z. E x y \ E y z \ E x z)" - unfolding symp_def transp_def by (metis, metis) - have "(\x y. E x y = (E x x \ E y y \ E x = E y))" - proof (intro allI iffI conjI) - fix x y - assume d: "E x y" - then show "E x x" using b c by metis - show "E y y" using b c d by metis - show "E x = E y" unfolding fun_eq_iff using b c d by metis - next - fix x y - assume "E x x \ E y y \ E x = E y" - then show "E x y" using b c by metis - qed - then show "part_equivp E" unfolding part_equivp_def using a by metis -qed - -lemma part_equivpI: - assumes "\x. R x x" "symp R" "transp R" - shows "part_equivp R" - using assms by (simp add: part_equivp_refl_symp_transp) - text {* Composition of Relations *} abbreviation - rel_conj (infixr "OOO" 75) + rel_conj :: "('a \ 'b \ bool) \ ('b \ 'a \ bool) \ 'a \ 'b \ bool" (infixr "OOO" 75) where "r1 OOO r2 \ r1 OO r2 OO r1" @@ -169,16 +53,16 @@ definition fun_rel :: "('a \ 'c \ bool) \ ('b \ 'd \ bool) \ ('a \ 'b) \ ('c \ 'd) \ bool" (infixr "===>" 55) where - "fun_rel E1 E2 = (\f g. \x y. E1 x y \ E2 (f x) (g y))" + "fun_rel R1 R2 = (\f g. \x y. R1 x y \ R2 (f x) (g y))" lemma fun_relI [intro]: - assumes "\x y. E1 x y \ E2 (f x) (g y)" - shows "(E1 ===> E2) f g" + assumes "\x y. R1 x y \ R2 (f x) (g y)" + shows "(R1 ===> R2) f g" using assms by (simp add: fun_rel_def) lemma fun_relE: - assumes "(E1 ===> E2) f g" and "E1 x y" - obtains "E2 (f x) (g y)" + assumes "(R1 ===> R2) f g" and "R1 x y" + obtains "R2 (f x) (g y)" using assms by (simp add: fun_rel_def) lemma fun_rel_eq: @@ -189,34 +73,41 @@ subsection {* Quotient Predicate *} definition - "Quotient E Abs Rep \ - (\a. Abs (Rep a) = a) \ (\a. E (Rep a) (Rep a)) \ - (\r s. E r s = (E r r \ E s s \ (Abs r = Abs s)))" + "Quotient R Abs Rep \ + (\a. Abs (Rep a) = a) \ (\a. R (Rep a) (Rep a)) \ + (\r s. R r s \ R r r \ R s s \ Abs r = Abs s)" + +lemma QuotientI: + assumes "\a. Abs (Rep a) = a" + and "\a. R (Rep a) (Rep a)" + and "\r s. R r s \ R r r \ R s s \ Abs r = Abs s" + shows "Quotient R Abs Rep" + using assms unfolding Quotient_def by blast lemma Quotient_abs_rep: - assumes a: "Quotient E Abs Rep" + assumes a: "Quotient R Abs Rep" shows "Abs (Rep a) = a" using a unfolding Quotient_def by simp lemma Quotient_rep_reflp: - assumes a: "Quotient E Abs Rep" - shows "E (Rep a) (Rep a)" + assumes a: "Quotient R Abs Rep" + shows "R (Rep a) (Rep a)" using a unfolding Quotient_def by blast lemma Quotient_rel: - assumes a: "Quotient E Abs Rep" - shows " E r s = (E r r \ E s s \ (Abs r = Abs s))" + assumes a: "Quotient R Abs Rep" + shows "R r r \ R s s \ Abs r = Abs s \ R r s" -- {* orientation does not loop on rewriting *} using a unfolding Quotient_def by blast lemma Quotient_rel_rep: assumes a: "Quotient R Abs Rep" - shows "R (Rep a) (Rep b) = (a = b)" + shows "R (Rep a) (Rep b) \ a = b" using a unfolding Quotient_def by metis @@ -228,22 +119,20 @@ by blast lemma Quotient_rel_abs: - assumes a: "Quotient E Abs Rep" - shows "E r s \ Abs r = Abs s" + assumes a: "Quotient R Abs Rep" + shows "R r s \ Abs r = Abs s" using a unfolding Quotient_def by blast lemma Quotient_symp: - assumes a: "Quotient E Abs Rep" - shows "symp E" - using a unfolding Quotient_def symp_def - by metis + assumes a: "Quotient R Abs Rep" + shows "symp R" + using a unfolding Quotient_def using sympI by metis lemma Quotient_transp: - assumes a: "Quotient E Abs Rep" - shows "transp E" - using a unfolding Quotient_def transp_def - by metis + assumes a: "Quotient R Abs Rep" + shows "transp R" + using a unfolding Quotient_def using transpI by metis lemma identity_quotient: shows "Quotient (op =) id id" @@ -291,8 +180,7 @@ and a: "R xa xb" "R ya yb" shows "R xa ya = R xb yb" using a Quotient_symp[OF q] Quotient_transp[OF q] - unfolding symp_def transp_def - by blast + by (blast elim: sympE transpE) lemma lambda_prs: assumes q1: "Quotient R1 Abs1 Rep1" @@ -300,7 +188,7 @@ shows "(Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x))) = (\x. f x)" unfolding fun_eq_iff using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] - by (simp add:) + by simp lemma lambda_prs1: assumes q1: "Quotient R1 Abs1 Rep1" @@ -308,7 +196,7 @@ shows "(Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x) = (\x. f x)" unfolding fun_eq_iff using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] - by (simp add:) + by simp lemma rep_abs_rsp: assumes q: "Quotient R Abs Rep" @@ -392,9 +280,7 @@ apply(simp add: in_respects fun_rel_def) apply(rule impI) using a equivp_reflp_symp_transp[of "R2"] - apply(simp add: reflp_def) - apply(simp) - apply(simp) + apply (auto elim: equivpE reflpE) done lemma bex_reg_eqv_range: @@ -406,7 +292,7 @@ apply(simp add: Respects_def in_respects fun_rel_def) apply(rule impI) using a equivp_reflp_symp_transp[of "R2"] - apply(simp add: reflp_def) + apply (auto elim: equivpE reflpE) done (* Next four lemmas are unused *) diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Quotient_Examples/FSet.thy --- a/src/HOL/Quotient_Examples/FSet.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Quotient_Examples/FSet.thy Tue Nov 30 21:54:15 2010 +0100 @@ -19,11 +19,21 @@ where [simp]: "list_eq xs ys \ set xs = set ys" +lemma list_eq_reflp: + "reflp list_eq" + by (auto intro: reflpI) + +lemma list_eq_symp: + "symp list_eq" + by (auto intro: sympI) + +lemma list_eq_transp: + "transp list_eq" + by (auto intro: transpI) + lemma list_eq_equivp: - shows "equivp list_eq" - unfolding equivp_reflp_symp_transp - unfolding reflp_def symp_def transp_def - by auto + "equivp list_eq" + by (auto intro: equivpI list_eq_reflp list_eq_symp list_eq_transp) text {* The @{text fset} type *} @@ -141,7 +151,7 @@ \ abs_fset (map Abs r) = abs_fset (map Abs s)" then have s: "(list_all2 R OOO op \) s s" by simp have d: "map Abs r \ map Abs s" - by (subst Quotient_rel[OF Quotient_fset]) (simp add: a) + by (subst Quotient_rel [OF Quotient_fset, symmetric]) (simp add: a) have b: "map Rep (map Abs r) \ map Rep (map Abs s)" by (rule map_list_eq_cong[OF d]) have y: "list_all2 R (map Rep (map Abs s)) s" @@ -267,8 +277,11 @@ proof (rule fun_relI, elim pred_compE) fix a b ba bb assume a: "list_all2 op \ a ba" + with list_symp [OF list_eq_symp] have a': "list_all2 op \ ba a" by (rule sympE) assume b: "ba \ bb" + with list_eq_symp have b': "bb \ ba" by (rule sympE) assume c: "list_all2 op \ bb b" + with list_symp [OF list_eq_symp] have c': "list_all2 op \ b bb" by (rule sympE) have "\x. (\xa\set a. x \ set xa) = (\xa\set b. x \ set xa)" proof fix x @@ -278,9 +291,6 @@ show "\xa\set b. x \ set xa" by (rule concat_rsp_pre[OF a b c d]) next assume e: "\xa\set b. x \ set xa" - have a': "list_all2 op \ ba a" by (rule list_all2_symp[OF list_eq_equivp, OF a]) - have b': "bb \ ba" by (rule equivp_symp[OF list_eq_equivp, OF b]) - have c': "list_all2 op \ b bb" by (rule list_all2_symp[OF list_eq_equivp, OF c]) show "\xa\set a. x \ set xa" by (rule concat_rsp_pre[OF c' b' a' e]) qed qed @@ -288,7 +298,6 @@ qed - section {* Quotient definitions for fsets *} @@ -474,7 +483,7 @@ assumes a: "reflp R" and b: "list_all2 R l r" shows "list_all2 R (z @ l) (z @ r)" - by (induct z) (simp_all add: b rev_iffD1 [OF a reflp_def]) + using a b by (induct z) (auto elim: reflpE) lemma append_rsp2_pre0: assumes a:"list_all2 op \ x x'" @@ -489,23 +498,14 @@ apply (rule list_all2_refl'[OF list_eq_equivp]) apply (simp_all del: list_eq_def) apply (rule list_all2_app_l) - apply (simp_all add: reflp_def) + apply (simp_all add: reflpI) done lemma append_rsp2_pre: - assumes a:"list_all2 op \ x x'" - and b: "list_all2 op \ z z'" + assumes "list_all2 op \ x x'" + and "list_all2 op \ z z'" shows "list_all2 op \ (x @ z) (x' @ z')" - apply (rule list_all2_transp[OF fset_equivp]) - apply (rule append_rsp2_pre0) - apply (rule a) - using b apply (induct z z' rule: list_induct2') - apply (simp_all only: append_Nil2) - apply (rule list_all2_refl'[OF list_eq_equivp]) - apply simp_all - apply (rule append_rsp2_pre1) - apply simp - done + using assms by (rule list_all2_appendI) lemma append_rsp2 [quot_respect]: "(list_all2 op \ OOO op \ ===> list_all2 op \ OOO op \ ===> list_all2 op \ OOO op \) append append" diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Quotient_Examples/Quotient_Message.thy --- a/src/HOL/Quotient_Examples/Quotient_Message.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Quotient_Examples/Quotient_Message.thy Tue Nov 30 21:54:15 2010 +0100 @@ -36,16 +36,16 @@ theorem equiv_msgrel: "equivp msgrel" proof (rule equivpI) - show "reflp msgrel" by (simp add: reflp_def msgrel_refl) - show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM) - show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS) + show "reflp msgrel" by (rule reflpI) (simp add: msgrel_refl) + show "symp msgrel" by (rule sympI) (blast intro: msgrel.SYM) + show "transp msgrel" by (rule transpI) (blast intro: msgrel.TRANS) qed subsection{*Some Functions on the Free Algebra*} subsubsection{*The Set of Nonces*} -fun +primrec freenonces :: "freemsg \ nat set" where "freenonces (NONCE N) = {N}" @@ -62,7 +62,7 @@ text{*A function to return the left part of the top pair in a message. It will be lifted to the initial algrebra, to serve as an example of that process.*} -fun +primrec freeleft :: "freemsg \ freemsg" where "freeleft (NONCE N) = NONCE N" @@ -75,7 +75,7 @@ (the abstract constructor) is injective*} lemma msgrel_imp_eqv_freeleft_aux: shows "freeleft U \ freeleft U" - by (induct rule: freeleft.induct) (auto) + by (fact msgrel_refl) theorem msgrel_imp_eqv_freeleft: assumes a: "U \ V" @@ -86,7 +86,7 @@ subsubsection{*The Right Projection*} text{*A function to return the right part of the top pair in a message.*} -fun +primrec freeright :: "freemsg \ freemsg" where "freeright (NONCE N) = NONCE N" @@ -99,7 +99,7 @@ (the abstract constructor) is injective*} lemma msgrel_imp_eqv_freeright_aux: shows "freeright U \ freeright U" - by (induct rule: freeright.induct) (auto) + by (fact msgrel_refl) theorem msgrel_imp_eqv_freeright: assumes a: "U \ V" @@ -110,7 +110,7 @@ subsubsection{*The Discriminator for Constructors*} text{*A function to distinguish nonces, mpairs and encryptions*} -fun +primrec freediscrim :: "freemsg \ int" where "freediscrim (NONCE N) = 0" diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Rat.thy --- a/src/HOL/Rat.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Rat.thy Tue Nov 30 21:54:15 2010 +0100 @@ -44,7 +44,7 @@ qed lemma equiv_ratrel: "equiv {x. snd x \ 0} ratrel" - by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel]) + by (rule equivI [OF refl_on_ratrel sym_ratrel trans_ratrel]) lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel] lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel] @@ -146,7 +146,7 @@ lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" proof - have "(\x. ratrel `` {(- fst x, snd x)}) respects ratrel" - by (simp add: congruent_def) + by (simp add: congruent_def split_paired_all) then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel) qed @@ -781,7 +781,7 @@ lemma of_rat_congruent: "(\(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel" -apply (rule congruent.intro) +apply (rule congruentI) apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) apply (simp only: of_int_mult [symmetric]) done diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/RealDef.thy --- a/src/HOL/RealDef.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/RealDef.thy Tue Nov 30 21:54:15 2010 +0100 @@ -14,8 +14,8 @@ text {* This theory contains a formalization of the real numbers as equivalence classes of Cauchy sequences of rationals. See - \url{HOL/ex/Dedekind_Real.thy} for an alternative construction - using Dedekind cuts. + @{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative + construction using Dedekind cuts. *} subsection {* Preliminary lemmas *} @@ -324,7 +324,7 @@ lemma equiv_realrel: "equiv {X. cauchy X} realrel" using refl_realrel sym_realrel trans_realrel - by (rule equiv.intro) + by (rule equivI) subsection {* The field of real numbers *} @@ -358,7 +358,7 @@ apply (simp add: quotientI X) apply (rule the_equality) apply clarsimp - apply (erule congruent.congruent [OF f]) + apply (erule congruentD [OF f]) apply (erule bspec) apply simp apply (rule refl_onD [OF refl_realrel]) @@ -370,14 +370,14 @@ assumes X: "cauchy X" and Y: "cauchy Y" shows "real_case (\X. real_case (\Y. f X Y) (Real Y)) (Real X) = f X Y" apply (subst real_case_1 [OF _ X]) - apply (rule congruent.intro) + apply (rule congruentI) apply (subst real_case_1 [OF _ Y]) apply (rule congruent2_implies_congruent [OF equiv_realrel f]) apply (simp add: realrel_def) apply (subst real_case_1 [OF _ Y]) apply (rule congruent2_implies_congruent [OF equiv_realrel f]) apply (simp add: realrel_def) - apply (erule congruent2.congruent2 [OF f]) + apply (erule congruent2D [OF f]) apply (rule refl_onD [OF refl_realrel]) apply (simp add: Y) apply (rule real_case_1 [OF _ Y]) @@ -416,7 +416,7 @@ lemma minus_respects_realrel: "(\X. Real (\n. - X n)) respects realrel" -proof (rule congruent.intro) +proof (rule congruentI) fix X Y assume "(X, Y) \ realrel" hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\n. X n - Y n)" unfolding realrel_def by simp_all @@ -492,7 +492,7 @@ lemma inverse_respects_realrel: "(\X. if vanishes X then c else Real (\n. inverse (X n))) respects realrel" (is "?inv respects realrel") -proof (rule congruent.intro) +proof (rule congruentI) fix X Y assume "(X, Y) \ realrel" hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\n. X n - Y n)" unfolding realrel_def by simp_all @@ -622,7 +622,7 @@ assumes sym: "sym r" assumes P: "\x y. (x, y) \ r \ P x \ P y" shows "P respects r" -apply (rule congruent.intro) +apply (rule congruentI) apply (rule iffI) apply (erule (1) P) apply (erule (1) P [OF symD [OF sym]]) diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/SEQ.thy --- a/src/HOL/SEQ.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/SEQ.thy Tue Nov 30 21:54:15 2010 +0100 @@ -221,15 +221,7 @@ lemma LIMSEQ_unique: fixes a b :: "'a::metric_space" shows "\X ----> a; X ----> b\ \ a = b" -apply (rule ccontr) -apply (drule_tac r="dist a b / 2" in metric_LIMSEQ_D, simp add: zero_less_dist_iff) -apply (drule_tac r="dist a b / 2" in metric_LIMSEQ_D, simp add: zero_less_dist_iff) -apply (clarify, rename_tac M N) -apply (subgoal_tac "dist a b < dist a b / 2 + dist a b / 2", simp) -apply (subgoal_tac "dist a b \ dist (X (max M N)) a + dist (X (max M N)) b") -apply (erule le_less_trans, rule add_strict_mono, simp, simp) -apply (subst dist_commute, rule dist_triangle) -done +by (drule (1) tendsto_dist, simp add: LIMSEQ_const_iff) lemma (in bounded_linear) LIMSEQ: "X ----> a \ (\n. f (X n)) ----> f a" diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/Word/Word.thy Tue Nov 30 21:54:15 2010 +0100 @@ -184,13 +184,13 @@ "word_pred a = word_of_int (Int.pred (uint a))" definition udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50) where - "a udvd b == EX n>=0. uint b = n * uint a" + "a udvd b = (EX n>=0. uint b = n * uint a)" definition word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50) where - "a <=s b == sint a <= sint b" + "a <=s b = (sint a <= sint b)" definition word_sless :: "'a :: len word => 'a word => bool" ("(_/ nat => 'a word" where - "setBit w n == set_bit w n True" + "setBit w n = set_bit w n True" definition clearBit :: "'a :: len0 word => nat => 'a word" where - "clearBit w n == set_bit w n False" + "clearBit w n = set_bit w n False" subsection "Shift operations" definition sshiftr1 :: "'a :: len word => 'a word" where - "sshiftr1 w == word_of_int (bin_rest (sint w))" + "sshiftr1 w = word_of_int (bin_rest (sint w))" definition bshiftr1 :: "bool => 'a :: len word => 'a word" where - "bshiftr1 b w == of_bl (b # butlast (to_bl w))" + "bshiftr1 b w = of_bl (b # butlast (to_bl w))" definition sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55) where - "w >>> n == (sshiftr1 ^^ n) w" + "w >>> n = (sshiftr1 ^^ n) w" definition mask :: "nat => 'a::len word" where - "mask n == (1 << n) - 1" + "mask n = (1 << n) - 1" definition revcast :: "'a :: len0 word => 'b :: len0 word" where - "revcast w == of_bl (takefill False (len_of TYPE('b)) (to_bl w))" + "revcast w = of_bl (takefill False (len_of TYPE('b)) (to_bl w))" definition slice1 :: "nat => 'a :: len0 word => 'b :: len0 word" where - "slice1 n w == of_bl (takefill False n (to_bl w))" + "slice1 n w = of_bl (takefill False n (to_bl w))" definition slice :: "nat => 'a :: len0 word => 'b :: len0 word" where - "slice n w == slice1 (size w - n) w" + "slice n w = slice1 (size w - n) w" subsection "Rotation" definition rotater1 :: "'a list => 'a list" where - "rotater1 ys == - case ys of [] => [] | x # xs => last ys # butlast ys" + "rotater1 ys = + (case ys of [] => [] | x # xs => last ys # butlast ys)" definition rotater :: "nat => 'a list => 'a list" where - "rotater n == rotater1 ^^ n" + "rotater n = rotater1 ^^ n" definition word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word" where - "word_rotr n w == of_bl (rotater n (to_bl w))" + "word_rotr n w = of_bl (rotater n (to_bl w))" definition word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word" where - "word_rotl n w == of_bl (rotate n (to_bl w))" + "word_rotl n w = of_bl (rotate n (to_bl w))" definition word_roti :: "int => 'a :: len0 word => 'a :: len0 word" where - "word_roti i w == if i >= 0 then word_rotr (nat i) w - else word_rotl (nat (- i)) w" + "word_roti i w = (if i >= 0 then word_rotr (nat i) w + else word_rotl (nat (- i)) w)" subsection "Split and cat operations" definition word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word" where - "word_cat a b == word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))" + "word_cat a b = word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))" definition word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)" where - "word_split a == - case bin_split (len_of TYPE ('c)) (uint a) of - (u, v) => (word_of_int u, word_of_int v)" + "word_split a = + (case bin_split (len_of TYPE ('c)) (uint a) of + (u, v) => (word_of_int u, word_of_int v))" definition word_rcat :: "'a :: len0 word list => 'b :: len0 word" where - "word_rcat ws == + "word_rcat ws = word_of_int (bin_rcat (len_of TYPE ('a)) (map uint ws))" definition word_rsplit :: "'a :: len0 word => 'b :: len word list" where - "word_rsplit w == + "word_rsplit w = map word_of_int (bin_rsplit (len_of TYPE ('b)) (len_of TYPE ('a), uint w))" definition max_word :: "'a::len word" -- "Largest representable machine integer." where - "max_word \ word_of_int (2 ^ len_of TYPE('a) - 1)" + "max_word = word_of_int (2 ^ len_of TYPE('a) - 1)" primrec of_bool :: "bool \ 'a::len word" where "of_bool False = 0" @@ -337,7 +337,7 @@ lemmas atLeastLessThan_alt = atLeastLessThan_def [unfolded atLeast_def lessThan_def Collect_conj_eq [symmetric]] -lemma mod_in_reps: "m > 0 ==> y mod m : {0::int ..< m}" +lemma mod_in_reps: "m > 0 \ y mod m : {0::int ..< m}" unfolding atLeastLessThan_alt by auto lemma @@ -390,7 +390,7 @@ unfolding sint_uint by (auto simp: bintrunc_sbintrunc_le) lemma bintr_uint': - "n >= size w ==> bintrunc n (uint w) = uint w" + "n >= size w \ bintrunc n (uint w) = uint w" apply (unfold word_size) apply (subst word_ubin.norm_Rep [symmetric]) apply (simp only: bintrunc_bintrunc_min word_size) @@ -398,7 +398,7 @@ done lemma wi_bintr': - "wb = word_of_int bin ==> n >= size wb ==> + "wb = word_of_int bin \ n >= size wb \ word_of_int (bintrunc n bin) = wb" unfolding word_size by (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] min_max.inf_absorb1) @@ -446,8 +446,9 @@ lemmas td_sint = word_sint.td -lemma word_number_of_alt: "number_of b == word_of_int (number_of b)" - unfolding word_number_of_def by (simp add: number_of_eq) +lemma word_number_of_alt [code_unfold_post]: + "number_of b = word_of_int (number_of b)" + by (simp add: number_of_eq word_number_of_def) lemma word_no_wi: "number_of = word_of_int" by (auto simp: word_number_of_def intro: ext) @@ -483,7 +484,7 @@ sint_sbintrunc [simp] unat_bintrunc [simp] -lemma size_0_eq: "size (w :: 'a :: len0 word) = 0 ==> v = w" +lemma size_0_eq: "size (w :: 'a :: len0 word) = 0 \ v = w" apply (unfold word_size) apply (rule word_uint.Rep_eqD) apply (rule box_equals) @@ -508,13 +509,13 @@ iffD2 [OF linorder_not_le uint_m2p_neg, standard] lemma lt2p_lem: - "len_of TYPE('a) <= n ==> uint (w :: 'a :: len0 word) < 2 ^ n" + "len_of TYPE('a) <= n \ uint (w :: 'a :: len0 word) < 2 ^ n" by (rule xtr8 [OF _ uint_lt2p]) simp lemmas uint_le_0_iff [simp] = uint_ge_0 [THEN leD, THEN linorder_antisym_conv1, standard] -lemma uint_nat: "uint w == int (unat w)" +lemma uint_nat: "uint w = int (unat w)" unfolding unat_def by auto lemma uint_number_of: @@ -523,7 +524,7 @@ by (simp only: int_word_uint) lemma unat_number_of: - "bin_sign b = Int.Pls ==> + "bin_sign b = Int.Pls \ unat (number_of b::'a::len0 word) = number_of b mod 2 ^ len_of TYPE ('a)" apply (unfold unat_def) apply (clarsimp simp only: uint_number_of) @@ -590,7 +591,7 @@ lemma word_eqI [rule_format] : fixes u :: "'a::len0 word" - shows "(ALL n. n < size u --> u !! n = v !! n) ==> u = v" + shows "(ALL n. n < size u --> u !! n = v !! n) \ u = v" apply (rule test_bit_eq_iff [THEN iffD1]) apply (rule ext) apply (erule allE) @@ -645,7 +646,7 @@ "{bl. length bl = len_of TYPE('a::len0)}" by (rule td_bl) -lemma word_size_bl: "size w == size (to_bl w)" +lemma word_size_bl: "size w = size (to_bl w)" unfolding word_size by auto lemma to_bl_use_of_bl: @@ -658,7 +659,7 @@ lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w" unfolding word_reverse_def by (simp add : word_bl.Abs_inverse) -lemma word_rev_gal: "word_reverse w = u ==> word_reverse u = w" +lemma word_rev_gal: "word_reverse w = u \ word_reverse u = w" by auto lemmas word_rev_gal' = sym [THEN word_rev_gal, symmetric, standard] @@ -675,7 +676,7 @@ done lemma of_bl_drop': - "lend = length bl - len_of TYPE ('a :: len0) ==> + "lend = length bl - len_of TYPE ('a :: len0) \ of_bl (drop lend bl) = (of_bl bl :: 'a word)" apply (unfold of_bl_def) apply (clarsimp simp add : trunc_bl2bin [symmetric]) @@ -693,7 +694,7 @@ "(number_of bin ::'a::len0 word) = of_bl (bin_to_bl (len_of TYPE ('a)) bin)" unfolding word_size of_bl_no by (simp add : word_number_of_def) -lemma uint_bl: "to_bl w == bin_to_bl (size w) (uint w)" +lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)" unfolding word_size to_bl_def by auto lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w" @@ -742,14 +743,14 @@ may want these in reverse, but loop as simp rules, so use following *) lemma num_of_bintr': - "bintrunc (len_of TYPE('a :: len0)) a = b ==> + "bintrunc (len_of TYPE('a :: len0)) a = b \ number_of a = (number_of b :: 'a word)" apply safe apply (rule_tac num_of_bintr [symmetric]) done lemma num_of_sbintr': - "sbintrunc (len_of TYPE('a :: len) - 1) a = b ==> + "sbintrunc (len_of TYPE('a :: len) - 1) a = b \ number_of a = (number_of b :: 'a word)" apply safe apply (rule_tac num_of_sbintr [symmetric]) @@ -769,7 +770,7 @@ lemma scast_id: "scast w = w" unfolding scast_def by auto -lemma ucast_bl: "ucast w == of_bl (to_bl w)" +lemma ucast_bl: "ucast w = of_bl (to_bl w)" unfolding ucast_def of_bl_def uint_bl by (auto simp add : word_size) @@ -799,7 +800,7 @@ lemmas is_up_down = trans [OF is_up is_down [symmetric], standard] -lemma down_cast_same': "uc = ucast ==> is_down uc ==> uc = scast" +lemma down_cast_same': "uc = ucast \ is_down uc \ uc = scast" apply (unfold is_down) apply safe apply (rule ext) @@ -809,7 +810,7 @@ done lemma word_rev_tf': - "r = to_bl (of_bl bl) ==> r = rev (takefill False (length r) (rev bl))" + "r = to_bl (of_bl bl) \ r = rev (takefill False (length r) (rev bl))" unfolding of_bl_def uint_bl by (clarsimp simp add: bl_bin_bl_rtf word_ubin.eq_norm word_size) @@ -829,17 +830,17 @@ done lemma ucast_up_app': - "uc = ucast ==> source_size uc + n = target_size uc ==> + "uc = ucast \ source_size uc + n = target_size uc \ to_bl (uc w) = replicate n False @ (to_bl w)" by (auto simp add : source_size target_size to_bl_ucast) lemma ucast_down_drop': - "uc = ucast ==> source_size uc = target_size uc + n ==> + "uc = ucast \ source_size uc = target_size uc + n \ to_bl (uc w) = drop n (to_bl w)" by (auto simp add : source_size target_size to_bl_ucast) lemma scast_down_drop': - "sc = scast ==> source_size sc = target_size sc + n ==> + "sc = scast \ source_size sc = target_size sc + n \ to_bl (sc w) = drop n (to_bl w)" apply (subgoal_tac "sc = ucast") apply safe @@ -850,7 +851,7 @@ done lemma sint_up_scast': - "sc = scast ==> is_up sc ==> sint (sc w) = sint w" + "sc = scast \ is_up sc \ sint (sc w) = sint w" apply (unfold is_up) apply safe apply (simp add: scast_def word_sbin.eq_norm) @@ -865,7 +866,7 @@ done lemma uint_up_ucast': - "uc = ucast ==> is_up uc ==> uint (uc w) = uint w" + "uc = ucast \ is_up uc \ uint (uc w) = uint w" apply (unfold is_up) apply safe apply (rule bin_eqI) @@ -881,18 +882,18 @@ lemmas uint_up_ucast = refl [THEN uint_up_ucast'] lemmas sint_up_scast = refl [THEN sint_up_scast'] -lemma ucast_up_ucast': "uc = ucast ==> is_up uc ==> ucast (uc w) = ucast w" +lemma ucast_up_ucast': "uc = ucast \ is_up uc \ ucast (uc w) = ucast w" apply (simp (no_asm) add: ucast_def) apply (clarsimp simp add: uint_up_ucast) done -lemma scast_up_scast': "sc = scast ==> is_up sc ==> scast (sc w) = scast w" +lemma scast_up_scast': "sc = scast \ is_up sc \ scast (sc w) = scast w" apply (simp (no_asm) add: scast_def) apply (clarsimp simp add: sint_up_scast) done lemma ucast_of_bl_up': - "w = of_bl bl ==> size bl <= size w ==> ucast w = of_bl bl" + "w = of_bl bl \ size bl <= size w \ ucast w = of_bl bl" by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI) lemmas ucast_up_ucast = refl [THEN ucast_up_ucast'] @@ -908,22 +909,22 @@ lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id] lemma up_ucast_surj: - "is_up (ucast :: 'b::len0 word => 'a::len0 word) ==> + "is_up (ucast :: 'b::len0 word => 'a::len0 word) \ surj (ucast :: 'a word => 'b word)" by (rule surjI, erule ucast_up_ucast_id) lemma up_scast_surj: - "is_up (scast :: 'b::len word => 'a::len word) ==> + "is_up (scast :: 'b::len word => 'a::len word) \ surj (scast :: 'a word => 'b word)" by (rule surjI, erule scast_up_scast_id) lemma down_scast_inj: - "is_down (scast :: 'b::len word => 'a::len word) ==> + "is_down (scast :: 'b::len word => 'a::len word) \ inj_on (ucast :: 'a word => 'b word) A" by (rule inj_on_inverseI, erule scast_down_scast_id) lemma down_ucast_inj: - "is_down (ucast :: 'b::len0 word => 'a::len0 word) ==> + "is_down (ucast :: 'b::len0 word => 'a::len0 word) \ inj_on (ucast :: 'a word => 'b word) A" by (rule inj_on_inverseI, erule ucast_down_ucast_id) @@ -931,7 +932,7 @@ by (rule word_bl.Rep_eqD) (simp add: word_rep_drop) lemma ucast_down_no': - "uc = ucast ==> is_down uc ==> uc (number_of bin) = number_of bin" + "uc = ucast \ is_down uc \ uc (number_of bin) = number_of bin" apply (unfold word_number_of_def is_down) apply (clarsimp simp add: ucast_def word_ubin.eq_norm) apply (rule word_ubin.norm_eq_iff [THEN iffD1]) @@ -940,7 +941,7 @@ lemmas ucast_down_no = ucast_down_no' [OF refl] -lemma ucast_down_bl': "uc = ucast ==> is_down uc ==> uc (of_bl bl) = of_bl bl" +lemma ucast_down_bl': "uc = ucast \ is_down uc \ uc (of_bl bl) = of_bl bl" unfolding of_bl_no by clarify (erule ucast_down_no) lemmas ucast_down_bl = ucast_down_bl' [OF refl] @@ -984,7 +985,7 @@ word_succ_def word_pred_def word_0_wi word_1_wi lemma udvdI: - "0 \ n ==> uint b = n * uint a ==> a udvd b" + "0 \ n \ uint b = n * uint a \ a udvd b" by (auto simp: udvd_def) lemmas word_div_no [simp] = @@ -1015,14 +1016,14 @@ lemmas word_0_wi_Pls = word_0_wi [folded Pls_def] lemmas word_0_no = word_0_wi_Pls [folded word_no_wi] -lemma int_one_bin: "(1 :: int) == (Int.Pls BIT 1)" +lemma int_one_bin: "(1 :: int) = (Int.Pls BIT 1)" unfolding Pls_def Bit_def by auto lemma word_1_no: - "(1 :: 'a :: len0 word) == number_of (Int.Pls BIT 1)" + "(1 :: 'a :: len0 word) = number_of (Int.Pls BIT 1)" unfolding word_1_wi word_number_of_def int_one_bin by auto -lemma word_m1_wi: "-1 == word_of_int -1" +lemma word_m1_wi: "-1 = word_of_int -1" by (rule word_number_of_alt) lemma word_m1_wi_Min: "-1 = word_of_int Int.Min" @@ -1056,7 +1057,7 @@ lemma unat_0 [simp]: "unat 0 = 0" unfolding unat_def by auto -lemma size_0_same': "size w = 0 ==> w = (v :: 'a :: len0 word)" +lemma size_0_same': "size w = 0 \ w = (v :: 'a :: len0 word)" apply (unfold word_size) apply (rule box_equals) defer @@ -1129,11 +1130,11 @@ lemmas wi_hom_syms = wi_homs [symmetric] -lemma word_sub_def: "a - b == a + - (b :: 'a :: len0 word)" +lemma word_sub_def: "a - b = a + - (b :: 'a :: len0 word)" unfolding word_sub_wi diff_minus by (simp only : word_uint.Rep_inverse wi_hom_syms) -lemmas word_diff_minus = word_sub_def [THEN meta_eq_to_obj_eq, standard] +lemmas word_diff_minus = word_sub_def [standard] lemma word_of_int_sub_hom: "(word_of_int a) - word_of_int b = word_of_int (a - b)" @@ -1265,13 +1266,13 @@ subsection "Order on fixed-length words" -lemma word_order_trans: "x <= y ==> y <= z ==> x <= (z :: 'a :: len0 word)" +lemma word_order_trans: "x <= y \ y <= z \ x <= (z :: 'a :: len0 word)" unfolding word_le_def by auto lemma word_order_refl: "z <= (z :: 'a :: len0 word)" unfolding word_le_def by auto -lemma word_order_antisym: "x <= y ==> y <= x ==> x = (y :: 'a :: len0 word)" +lemma word_order_antisym: "x <= y \ y <= x \ x = (y :: 'a :: len0 word)" unfolding word_le_def by (auto intro!: word_uint.Rep_eqD) lemma word_order_linear: @@ -1307,7 +1308,7 @@ lemmas word_gt_0_no [simp] = word_gt_0 [of "number_of y", standard] -lemma word_sless_alt: "(a (0 :: 'a word) ~= 1"; +lemma word_zero_neq_one: "0 < len_of TYPE ('a :: len0) \ (0 :: 'a word) ~= 1"; unfolding word_arith_wis by (auto simp add: word_ubin.norm_eq_iff [symmetric] gr0_conv_Suc) @@ -1356,7 +1357,7 @@ lemma no_no [simp] : "number_of (number_of b) = number_of b" by (simp add: number_of_eq) -lemma unat_minus_one: "x ~= 0 ==> unat (x - 1) = unat x - 1" +lemma unat_minus_one: "x ~= 0 \ unat (x - 1) = unat x - 1" apply (unfold unat_def) apply (simp only: int_word_uint word_arith_alts rdmods) apply (subgoal_tac "uint x >= 1") @@ -1378,7 +1379,7 @@ apply simp done -lemma measure_unat: "p ~= 0 ==> unat (p - 1) < unat p" +lemma measure_unat: "p ~= 0 \ unat (p - 1) < unat p" by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric]) lemmas uint_add_ge0 [simp] = @@ -1423,7 +1424,7 @@ subsection {* Definition of uint\_arith *} lemma word_of_int_inverse: - "word_of_int r = a ==> 0 <= r ==> r < 2 ^ len_of TYPE('a) ==> + "word_of_int r = a \ 0 <= r \ r < 2 ^ len_of TYPE('a) \ uint (a::'a::len0 word) = r" apply (erule word_uint.Abs_inverse' [rotated]) apply (simp add: uints_num) @@ -1454,7 +1455,7 @@ uint_sub_if' uint_plus_if' (* use this to stop, eg, 2 ^ len_of TYPE (32) being simplified *) -lemma power_False_cong: "False ==> a ^ b = c ^ d" +lemma power_False_cong: "False \ a ^ b = c ^ d" by auto (* uint_arith_tac: reduce to arithmetic on int, try to solve by arith *) @@ -1520,11 +1521,11 @@ lemmas word_sub_le = word_sub_le_iff [THEN iffD2, standard] lemma word_less_sub1: - "(x :: 'a :: len word) ~= 0 ==> (1 < x) = (0 < x - 1)" + "(x :: 'a :: len word) ~= 0 \ (1 < x) = (0 < x - 1)" by uint_arith lemma word_le_sub1: - "(x :: 'a :: len word) ~= 0 ==> (1 <= x) = (0 <= x - 1)" + "(x :: 'a :: len word) ~= 0 \ (1 <= x) = (0 <= x - 1)" by uint_arith lemma sub_wrap_lt: @@ -1536,19 +1537,19 @@ by uint_arith lemma plus_minus_not_NULL_ab: - "(x :: 'a :: len0 word) <= ab - c ==> c <= ab ==> c ~= 0 ==> x + c ~= 0" + "(x :: 'a :: len0 word) <= ab - c \ c <= ab \ c ~= 0 \ x + c ~= 0" by uint_arith lemma plus_minus_no_overflow_ab: - "(x :: 'a :: len0 word) <= ab - c ==> c <= ab ==> x <= x + c" + "(x :: 'a :: len0 word) <= ab - c \ c <= ab \ x <= x + c" by uint_arith lemma le_minus': - "(a :: 'a :: len0 word) + c <= b ==> a <= a + c ==> c <= b - a" + "(a :: 'a :: len0 word) + c <= b \ a <= a + c \ c <= b - a" by uint_arith lemma le_plus': - "(a :: 'a :: len0 word) <= b ==> c <= b - a ==> a + c <= b" + "(a :: 'a :: len0 word) <= b \ c <= b - a \ a + c <= b" by uint_arith lemmas le_plus = le_plus' [rotated] @@ -1556,90 +1557,90 @@ lemmas le_minus = leD [THEN thin_rl, THEN le_minus', standard] lemma word_plus_mono_right: - "(y :: 'a :: len0 word) <= z ==> x <= x + z ==> x + y <= x + z" + "(y :: 'a :: len0 word) <= z \ x <= x + z \ x + y <= x + z" by uint_arith lemma word_less_minus_cancel: - "y - x < z - x ==> x <= z ==> (y :: 'a :: len0 word) < z" + "y - x < z - x \ x <= z \ (y :: 'a :: len0 word) < z" by uint_arith lemma word_less_minus_mono_left: - "(y :: 'a :: len0 word) < z ==> x <= y ==> y - x < z - x" + "(y :: 'a :: len0 word) < z \ x <= y \ y - x < z - x" by uint_arith lemma word_less_minus_mono: - "a < c ==> d < b ==> a - b < a ==> c - d < c - ==> a - b < c - (d::'a::len word)" + "a < c \ d < b \ a - b < a \ c - d < c + \ a - b < c - (d::'a::len word)" by uint_arith lemma word_le_minus_cancel: - "y - x <= z - x ==> x <= z ==> (y :: 'a :: len0 word) <= z" + "y - x <= z - x \ x <= z \ (y :: 'a :: len0 word) <= z" by uint_arith lemma word_le_minus_mono_left: - "(y :: 'a :: len0 word) <= z ==> x <= y ==> y - x <= z - x" + "(y :: 'a :: len0 word) <= z \ x <= y \ y - x <= z - x" by uint_arith lemma word_le_minus_mono: - "a <= c ==> d <= b ==> a - b <= a ==> c - d <= c - ==> a - b <= c - (d::'a::len word)" + "a <= c \ d <= b \ a - b <= a \ c - d <= c + \ a - b <= c - (d::'a::len word)" by uint_arith lemma plus_le_left_cancel_wrap: - "(x :: 'a :: len0 word) + y' < x ==> x + y < x ==> (x + y' < x + y) = (y' < y)" + "(x :: 'a :: len0 word) + y' < x \ x + y < x \ (x + y' < x + y) = (y' < y)" by uint_arith lemma plus_le_left_cancel_nowrap: - "(x :: 'a :: len0 word) <= x + y' ==> x <= x + y ==> + "(x :: 'a :: len0 word) <= x + y' \ x <= x + y \ (x + y' < x + y) = (y' < y)" by uint_arith lemma word_plus_mono_right2: - "(a :: 'a :: len0 word) <= a + b ==> c <= b ==> a <= a + c" + "(a :: 'a :: len0 word) <= a + b \ c <= b \ a <= a + c" by uint_arith lemma word_less_add_right: - "(x :: 'a :: len0 word) < y - z ==> z <= y ==> x + z < y" + "(x :: 'a :: len0 word) < y - z \ z <= y \ x + z < y" by uint_arith lemma word_less_sub_right: - "(x :: 'a :: len0 word) < y + z ==> y <= x ==> x - y < z" + "(x :: 'a :: len0 word) < y + z \ y <= x \ x - y < z" by uint_arith lemma word_le_plus_either: - "(x :: 'a :: len0 word) <= y | x <= z ==> y <= y + z ==> x <= y + z" + "(x :: 'a :: len0 word) <= y | x <= z \ y <= y + z \ x <= y + z" by uint_arith lemma word_less_nowrapI: - "(x :: 'a :: len0 word) < z - k ==> k <= z ==> 0 < k ==> x < x + k" + "(x :: 'a :: len0 word) < z - k \ k <= z \ 0 < k \ x < x + k" by uint_arith -lemma inc_le: "(i :: 'a :: len word) < m ==> i + 1 <= m" +lemma inc_le: "(i :: 'a :: len word) < m \ i + 1 <= m" by uint_arith lemma inc_i: - "(1 :: 'a :: len word) <= i ==> i < m ==> 1 <= (i + 1) & i + 1 <= m" + "(1 :: 'a :: len word) <= i \ i < m \ 1 <= (i + 1) & i + 1 <= m" by uint_arith lemma udvd_incr_lem: - "up < uq ==> up = ua + n * uint K ==> - uq = ua + n' * uint K ==> up + uint K <= uq" + "up < uq \ up = ua + n * uint K \ + uq = ua + n' * uint K \ up + uint K <= uq" apply clarsimp apply (drule less_le_mult) apply safe done lemma udvd_incr': - "p < q ==> uint p = ua + n * uint K ==> - uint q = ua + n' * uint K ==> p + K <= q" + "p < q \ uint p = ua + n * uint K \ + uint q = ua + n' * uint K \ p + K <= q" apply (unfold word_less_alt word_le_def) apply (drule (2) udvd_incr_lem) apply (erule uint_add_le [THEN order_trans]) done lemma udvd_decr': - "p < q ==> uint p = ua + n * uint K ==> - uint q = ua + n' * uint K ==> p <= q - K" + "p < q \ uint p = ua + n * uint K \ + uint q = ua + n' * uint K \ p <= q - K" apply (unfold word_less_alt word_le_def) apply (drule (2) udvd_incr_lem) apply (drule le_diff_eq [THEN iffD2]) @@ -1652,7 +1653,7 @@ lemmas udvd_decr0 = udvd_decr' [where ua=0, simplified] lemma udvd_minus_le': - "xy < k ==> z udvd xy ==> z udvd k ==> xy <= k - z" + "xy < k \ z udvd xy \ z udvd k \ xy <= k - z" apply (unfold udvd_def) apply clarify apply (erule (2) udvd_decr0) @@ -1661,8 +1662,8 @@ ML {* Delsimprocs Numeral_Simprocs.cancel_factors *} lemma udvd_incr2_K: - "p < a + s ==> a <= a + s ==> K udvd s ==> K udvd p - a ==> a <= p ==> - 0 < K ==> p <= p + K & p + K <= a + s" + "p < a + s \ a <= a + s \ K udvd s \ K udvd p - a \ a <= p \ + 0 < K \ p <= p + K & p + K <= a + s" apply (unfold udvd_def) apply clarify apply (simp add: uint_arith_simps split: split_if_asm) @@ -1680,7 +1681,7 @@ (* links with rbl operations *) lemma word_succ_rbl: - "to_bl w = bl ==> to_bl (word_succ w) = (rev (rbl_succ (rev bl)))" + "to_bl w = bl \ to_bl (word_succ w) = (rev (rbl_succ (rev bl)))" apply (unfold word_succ_def) apply clarify apply (simp add: to_bl_of_bin) @@ -1688,7 +1689,7 @@ done lemma word_pred_rbl: - "to_bl w = bl ==> to_bl (word_pred w) = (rev (rbl_pred (rev bl)))" + "to_bl w = bl \ to_bl (word_pred w) = (rev (rbl_pred (rev bl)))" apply (unfold word_pred_def) apply clarify apply (simp add: to_bl_of_bin) @@ -1696,7 +1697,7 @@ done lemma word_add_rbl: - "to_bl v = vbl ==> to_bl w = wbl ==> + "to_bl v = vbl \ to_bl w = wbl \ to_bl (v + w) = (rev (rbl_add (rev vbl) (rev wbl)))" apply (unfold word_add_def) apply clarify @@ -1705,7 +1706,7 @@ done lemma word_mult_rbl: - "to_bl v = vbl ==> to_bl w = wbl ==> + "to_bl v = vbl \ to_bl w = wbl \ to_bl (v * w) = (rev (rbl_mult (rev vbl) (rev wbl)))" apply (unfold word_mult_def) apply clarify @@ -1715,14 +1716,9 @@ lemma rtb_rbl_ariths: "rev (to_bl w) = ys \ rev (to_bl (word_succ w)) = rbl_succ ys" - "rev (to_bl w) = ys \ rev (to_bl (word_pred w)) = rbl_pred ys" - - "[| rev (to_bl v) = ys; rev (to_bl w) = xs |] - ==> rev (to_bl (v * w)) = rbl_mult ys xs" - - "[| rev (to_bl v) = ys; rev (to_bl w) = xs |] - ==> rev (to_bl (v + w)) = rbl_add ys xs" + "rev (to_bl v) = ys \ rev (to_bl w) = xs \ rev (to_bl (v * w)) = rbl_mult ys xs" + "rev (to_bl v) = ys \ rev (to_bl w) = xs \ rev (to_bl (v + w)) = rbl_add ys xs" by (auto simp: rev_swap [symmetric] word_succ_rbl word_pred_rbl word_mult_rbl word_add_rbl) @@ -1784,7 +1780,7 @@ done lemma word_of_int_nat: - "0 <= x ==> word_of_int x = of_nat (nat x)" + "0 <= x \ word_of_int x = of_nat (nat x)" by (simp add: of_nat_nat word_of_int) lemma word_number_of_eq: @@ -1806,7 +1802,7 @@ subsection "Word and nat" lemma td_ext_unat': - "n = len_of TYPE ('a :: len) ==> + "n = len_of TYPE ('a :: len) \ td_ext (unat :: 'a word => nat) of_nat (unats n) (%i. i mod 2 ^ n)" apply (unfold td_ext_def' unat_def word_of_nat unats_uints) @@ -1829,7 +1825,7 @@ lemmas unat_lt2p [iff] = word_unat.Rep [unfolded unats_def mem_Collect_eq] -lemma unat_le: "y <= unat (z :: 'a :: len word) ==> y : unats (len_of TYPE ('a))" +lemma unat_le: "y <= unat (z :: 'a :: len word) \ y : unats (len_of TYPE ('a))" apply (unfold unats_def) apply clarsimp apply (rule xtrans, rule unat_lt2p, assumption) @@ -1864,11 +1860,11 @@ lemmas of_nat_2p = mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]] -lemma of_nat_gt_0: "of_nat k ~= 0 ==> 0 < k" +lemma of_nat_gt_0: "of_nat k ~= 0 \ 0 < k" by (cases k) auto lemma of_nat_neq_0: - "0 < k ==> k < 2 ^ len_of TYPE ('a :: len) ==> of_nat k ~= (0 :: 'a word)" + "0 < k \ k < 2 ^ len_of TYPE ('a :: len) \ of_nat k ~= (0 :: 'a word)" by (clarsimp simp add : of_nat_0) lemma Abs_fnat_hom_add: @@ -1943,7 +1939,7 @@ trans [OF unat_word_ariths(1) mod_nat_add, simplified, standard] lemma le_no_overflow: - "x <= b ==> a <= a + b ==> x <= a + (b :: 'a :: len0 word)" + "x <= b \ a <= a + b \ x <= a + (b :: 'a :: len0 word)" apply (erule order_trans) apply (erule olen_add_eqv [THEN iffD1]) done @@ -2064,7 +2060,7 @@ lemmas unat_plus_simple = trans [OF no_olen_add_nat unat_add_lem, standard] lemma word_div_mult: - "(0 :: 'a :: len word) < y ==> unat x * unat y < 2 ^ len_of TYPE('a) ==> + "(0 :: 'a :: len word) < y \ unat x * unat y < 2 ^ len_of TYPE('a) \ x * y div y = x" apply unat_arith apply clarsimp @@ -2072,7 +2068,7 @@ apply auto done -lemma div_lt': "(i :: 'a :: len word) <= k div x ==> +lemma div_lt': "(i :: 'a :: len word) <= k div x \ unat i * unat x < 2 ^ len_of TYPE('a)" apply unat_arith apply clarsimp @@ -2083,7 +2079,7 @@ lemmas div_lt'' = order_less_imp_le [THEN div_lt'] -lemma div_lt_mult: "(i :: 'a :: len word) < k div x ==> 0 < x ==> i * x < k" +lemma div_lt_mult: "(i :: 'a :: len word) < k div x \ 0 < x \ i * x < k" apply (frule div_lt'' [THEN unat_mult_lem [THEN iffD1]]) apply (simp add: unat_arith_simps) apply (drule (1) mult_less_mono1) @@ -2092,7 +2088,7 @@ done lemma div_le_mult: - "(i :: 'a :: len word) <= k div x ==> 0 < x ==> i * x <= k" + "(i :: 'a :: len word) <= k div x \ 0 < x \ i * x <= k" apply (frule div_lt' [THEN unat_mult_lem [THEN iffD1]]) apply (simp add: unat_arith_simps) apply (drule mult_le_mono1) @@ -2101,7 +2097,7 @@ done lemma div_lt_uint': - "(i :: 'a :: len word) <= k div x ==> uint i * uint x < 2 ^ len_of TYPE('a)" + "(i :: 'a :: len word) <= k div x \ uint i * uint x < 2 ^ len_of TYPE('a)" apply (unfold uint_nat) apply (drule div_lt') apply (simp add: zmult_int zless_nat_eq_int_zless [symmetric] @@ -2111,7 +2107,7 @@ lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint'] lemma word_le_exists': - "(x :: 'a :: len0 word) <= y ==> + "(x :: 'a :: len0 word) <= y \ (EX z. y = x + z & uint x + uint z < 2 ^ len_of TYPE('a))" apply (rule exI) apply (rule conjI) @@ -2164,7 +2160,7 @@ apply simp done -lemma word_mod_less_divisor: "0 < n ==> m mod n < (n :: 'a :: len word)" +lemma word_mod_less_divisor: "0 < n \ m mod n < (n :: 'a :: len word)" apply (simp only: word_less_nat_alt word_arith_nat_defs) apply (clarsimp simp add : uno_simps) done @@ -2178,7 +2174,7 @@ by (simp add : word_of_int_power_hom [symmetric]) lemma of_bl_length_less: - "length x = k ==> k < len_of TYPE('a) ==> (of_bl x :: 'a :: len word) < 2 ^ k" + "length x = k \ k < len_of TYPE('a) \ (of_bl x :: 'a :: len word) < 2 ^ k" apply (unfold of_bl_no [unfolded word_number_of_def] word_less_alt word_number_of_alt) apply safe @@ -2246,7 +2242,7 @@ bin_trunc_ao(1) [symmetric]) lemma word_ops_nth_size: - "n < size (x::'a::len0 word) ==> + "n < size (x::'a::len0 word) \ (x OR y) !! n = (x !! n | y !! n) & (x AND y) !! n = (x !! n & y !! n) & (x XOR y) !! n = (x !! n ~= y !! n) & @@ -2392,10 +2388,10 @@ lemma leoa: fixes x :: "'a::len0 word" - shows "(w = (x OR y)) ==> (y = (w AND y))" by auto + shows "(w = (x OR y)) \ (y = (w AND y))" by auto lemma leao: fixes x' :: "'a::len0 word" - shows "(w' = (x' AND y')) ==> (x' = (x' OR w'))" by auto + shows "(w' = (x' AND y')) \ (x' = (x' OR w'))" by auto lemmas word_ao_equiv = leao [COMP leoa [COMP iffI]] @@ -2447,7 +2443,7 @@ by (simp add : sign_Min_lt_0 number_of_is_id) lemma word_msb_no': - "w = number_of bin ==> msb (w::'a::len word) = bin_nth bin (size w - 1)" + "w = number_of bin \ msb (w::'a::len word) = bin_nth bin (size w - 1)" unfolding word_msb_def word_number_of_def by (clarsimp simp add: word_sbin.eq_norm word_size bin_sign_lem) @@ -2487,7 +2483,7 @@ unfolding to_bl_def word_test_bit_def word_size by (rule bin_nth_uint) -lemma to_bl_nth: "n < size w ==> to_bl w ! n = w !! (size w - Suc n)" +lemma to_bl_nth: "n < size w \ to_bl w ! n = w !! (size w - Suc n)" apply (unfold test_bit_bl) apply clarsimp apply (rule trans) @@ -2530,7 +2526,7 @@ lemmas word_ops_lsb = lsb0 [unfolded word_lsb_alt] lemma td_ext_nth': - "n = size (w::'a::len0 word) ==> ofn = set_bits ==> [w, ofn g] = l ==> + "n = size (w::'a::len0 word) \ ofn = set_bits \ [w, ofn g] = l \ td_ext test_bit ofn {f. ALL i. f i --> i < n} (%h i. h i & i < n)" apply (unfold word_size td_ext_def') apply (safe del: subset_antisym) @@ -2575,7 +2571,7 @@ lemma test_bit_no': fixes w :: "'a::len0 word" - shows "w = number_of bin ==> test_bit w n = (n < size w & bin_nth bin n)" + shows "w = number_of bin \ test_bit w n = (n < size w & bin_nth bin n)" unfolding word_test_bit_def word_number_of_def word_size by (simp add : nth_bintr [symmetric] word_ubin.eq_norm) @@ -2605,10 +2601,13 @@ test_bit_no nth_bintr) done -lemmas setBit_no = setBit_def [THEN trans [OF meta_eq_to_obj_eq word_set_no], - simplified if_simps, THEN eq_reflection, standard] -lemmas clearBit_no = clearBit_def [THEN trans [OF meta_eq_to_obj_eq word_set_no], - simplified if_simps, THEN eq_reflection, standard] +lemma setBit_no: + "setBit (number_of bin) n = number_of (bin_sc n 1 bin) " + by (simp add: setBit_def word_set_no) + +lemma clearBit_no: + "clearBit (number_of bin) n = number_of (bin_sc n 0 bin)" + by (simp add: clearBit_def word_set_no) lemma to_bl_n1: "to_bl (-1::'a::len0 word) = replicate (len_of TYPE ('a)) True" @@ -2643,7 +2642,7 @@ done lemma test_bit_2p': - "w = word_of_int (2 ^ n) ==> + "w = word_of_int (2 ^ n) \ w !! m = (m = n & m < size (w :: 'a :: len word))" unfolding word_test_bit_def word_size by (auto simp add: word_ubin.eq_norm nth_bintr nth_2p_bin) @@ -2656,7 +2655,7 @@ by (simp add: of_int_power) lemma uint_2p: - "(0::'a::len word) < 2 ^ n ==> uint (2 ^ n::'a::len word) = 2 ^ n" + "(0::'a::len word) < 2 ^ n \ uint (2 ^ n::'a::len word) = 2 ^ n" apply (unfold word_arith_power_alt) apply (case_tac "len_of TYPE ('a)") apply clarsimp @@ -2682,7 +2681,7 @@ apply simp done -lemma bang_is_le: "x !! m ==> 2 ^ m <= (x :: 'a :: len word)" +lemma bang_is_le: "x !! m \ 2 ^ m <= (x :: 'a :: len word)" apply (rule xtr3) apply (rule_tac [2] y = "x" in le_word_or2) apply (rule word_eqI) @@ -2996,7 +2995,7 @@ lemmas hd_sshiftr = take_sshiftr' [THEN conjunct1, standard] lemmas take_sshiftr = take_sshiftr' [THEN conjunct2, standard] -lemma atd_lem: "take n xs = t ==> drop n xs = d ==> xs = t @ d" +lemma atd_lem: "take n xs = t \ drop n xs = d \ xs = t @ d" by (auto intro: append_take_drop_id [symmetric]) lemmas bl_shiftr = atd_lem [OF take_shiftr drop_shiftr] @@ -3022,7 +3021,7 @@ lemma shiftl_zero_size: fixes x :: "'a::len0 word" - shows "size x <= n ==> x << n = 0" + shows "size x <= n \ x << n = 0" apply (unfold word_size) apply (rule word_eqI) apply (clarsimp simp add: shiftl_bl word_size test_bit_of_bl nth_append) @@ -3059,7 +3058,7 @@ by (simp add : word_sbin.eq_norm) lemma shiftr_no': - "w = number_of bin ==> + "w = number_of bin \ (w::'a::len0 word) >> n = number_of ((bin_rest ^^ n) (bintrunc (size w) bin))" apply clarsimp apply (rule word_eqI) @@ -3067,7 +3066,7 @@ done lemma sshiftr_no': - "w = number_of bin ==> w >>> n = number_of ((bin_rest ^^ n) + "w = number_of bin \ w >>> n = number_of ((bin_rest ^^ n) (sbintrunc (size w - 1) bin))" apply clarsimp apply (rule word_eqI) @@ -3082,7 +3081,7 @@ shiftr_no' [where w = "number_of w", OF refl, unfolded word_size, standard] lemma shiftr1_bl_of': - "us = shiftr1 (of_bl bl) ==> length bl <= size us ==> + "us = shiftr1 (of_bl bl) \ length bl <= size us \ us = of_bl (butlast bl)" by (clarsimp simp: shiftr1_def of_bl_def word_size butlast_rest_bl2bin word_ubin.eq_norm trunc_bl2bin) @@ -3090,7 +3089,7 @@ lemmas shiftr1_bl_of = refl [THEN shiftr1_bl_of', unfolded word_size] lemma shiftr_bl_of' [rule_format]: - "us = of_bl bl >> n ==> length bl <= size us --> + "us = of_bl bl >> n \ length bl <= size us --> us = of_bl (take (length bl - n) bl)" apply (unfold shiftr_def) apply hypsubst @@ -3147,8 +3146,8 @@ done lemma aligned_bl_add_size': - "size x - n = m ==> n <= size x ==> drop m (to_bl x) = replicate n False ==> - take m (to_bl y) = replicate m False ==> + "size x - n = m \ n <= size x \ drop m (to_bl x) = replicate n False \ + take m (to_bl y) = replicate m False \ to_bl (x + y) = take m (to_bl x) @ drop m (to_bl y)" apply (subgoal_tac "x AND y = 0") prefer 2 @@ -3167,7 +3166,7 @@ subsubsection "Mask" -lemma nth_mask': "m = mask n ==> test_bit m i = (i < n & i < size m)" +lemma nth_mask': "m = mask n \ test_bit m i = (i < n & i < size m)" apply (unfold mask_def test_bit_bl) apply (simp only: word_1_bl [symmetric] shiftl_of_bl) apply (clarsimp simp add: word_size) @@ -3247,14 +3246,14 @@ done lemma word_2p_lem: - "n < size w ==> w < 2 ^ n = (uint (w :: 'a :: len word) < 2 ^ n)" + "n < size w \ w < 2 ^ n = (uint (w :: 'a :: len word) < 2 ^ n)" apply (unfold word_size word_less_alt word_number_of_alt) apply (clarsimp simp add: word_of_int_power_hom word_uint.eq_norm int_mod_eq' simp del: word_of_int_bin) done -lemma less_mask_eq: "x < 2 ^ n ==> x AND mask n = (x :: 'a :: len word)" +lemma less_mask_eq: "x < 2 ^ n \ x AND mask n = (x :: 'a :: len word)" apply (unfold word_less_alt word_number_of_alt) apply (clarsimp simp add: and_mask_mod_2p word_of_int_power_hom word_uint.eq_norm @@ -3270,11 +3269,11 @@ lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size, standard] -lemma and_mask_less_size: "n < size x ==> x AND mask n < 2^n" +lemma and_mask_less_size: "n < size x \ x AND mask n < 2^n" unfolding word_size by (erule and_mask_less') lemma word_mod_2p_is_mask': - "c = 2 ^ n ==> c > 0 ==> x mod c = (x :: 'a :: len word) AND mask n" + "c = 2 ^ n \ c > 0 \ x mod c = (x :: 'a :: len word) AND mask n" by (clarsimp simp add: word_mod_def uint_2p and_mask_mod_2p) lemmas word_mod_2p_is_mask = refl [THEN word_mod_2p_is_mask'] @@ -3317,7 +3316,7 @@ done lemma revcast_rev_ucast': - "cs = [rc, uc] ==> rc = revcast (word_reverse w) ==> uc = ucast w ==> + "cs = [rc, uc] \ rc = revcast (word_reverse w) \ uc = ucast w \ rc = word_reverse uc" apply (unfold ucast_def revcast_def' Let_def word_reverse_def) apply (clarsimp simp add : to_bl_of_bin takefill_bintrunc) @@ -3338,7 +3337,7 @@ lemmas wsst_TYs = source_size target_size word_size lemma revcast_down_uu': - "rc = revcast ==> source_size rc = target_size rc + n ==> + "rc = revcast \ source_size rc = target_size rc + n \ rc (w :: 'a :: len word) = ucast (w >> n)" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') @@ -3349,7 +3348,7 @@ done lemma revcast_down_us': - "rc = revcast ==> source_size rc = target_size rc + n ==> + "rc = revcast \ source_size rc = target_size rc + n \ rc (w :: 'a :: len word) = ucast (w >>> n)" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') @@ -3360,7 +3359,7 @@ done lemma revcast_down_su': - "rc = revcast ==> source_size rc = target_size rc + n ==> + "rc = revcast \ source_size rc = target_size rc + n \ rc (w :: 'a :: len word) = scast (w >> n)" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') @@ -3371,7 +3370,7 @@ done lemma revcast_down_ss': - "rc = revcast ==> source_size rc = target_size rc + n ==> + "rc = revcast \ source_size rc = target_size rc + n \ rc (w :: 'a :: len word) = scast (w >>> n)" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') @@ -3387,7 +3386,7 @@ lemmas revcast_down_ss = refl [THEN revcast_down_ss'] lemma cast_down_rev: - "uc = ucast ==> source_size uc = target_size uc + n ==> + "uc = ucast \ source_size uc = target_size uc + n \ uc w = revcast ((w :: 'a :: len word) << n)" apply (unfold shiftl_rev) apply clarify @@ -3399,7 +3398,7 @@ done lemma revcast_up': - "rc = revcast ==> source_size rc + n = target_size rc ==> + "rc = revcast \ source_size rc + n = target_size rc \ rc w = (ucast w :: 'a :: len word) << n" apply (simp add: revcast_def') apply (rule word_bl.Rep_inverse') @@ -3424,13 +3423,14 @@ subsubsection "Slices" -lemmas slice1_no_bin [simp] = - slice1_def [where w="number_of w", unfolded to_bl_no_bin, standard] - -lemmas slice_no_bin [simp] = - trans [OF slice_def [THEN meta_eq_to_obj_eq] - slice1_no_bin [THEN meta_eq_to_obj_eq], - unfolded word_size, standard] +lemma slice1_no_bin [simp]: + "slice1 n (number_of w :: 'b word) = of_bl (takefill False n (bin_to_bl (len_of TYPE('b :: len0)) w))" + by (simp add: slice1_def) + +lemma slice_no_bin [simp]: + "slice n (number_of w :: 'b word) = of_bl (takefill False (len_of TYPE('b :: len0) - n) + (bin_to_bl (len_of TYPE('b :: len0)) w))" + by (simp add: slice_def word_size) lemma slice1_0 [simp] : "slice1 n 0 = 0" unfolding slice1_def by (simp add : to_bl_0) @@ -3462,13 +3462,13 @@ by (simp add : nth_ucast nth_shiftr) lemma slice1_down_alt': - "sl = slice1 n w ==> fs = size sl ==> fs + k = n ==> + "sl = slice1 n w \ fs = size sl \ fs + k = n \ to_bl sl = takefill False fs (drop k (to_bl w))" unfolding slice1_def word_size of_bl_def uint_bl by (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop drop_takefill) lemma slice1_up_alt': - "sl = slice1 n w ==> fs = size sl ==> fs = n + k ==> + "sl = slice1 n w \ fs = size sl \ fs = n + k \ to_bl sl = takefill False fs (replicate k False @ (to_bl w))" apply (unfold slice1_def word_size of_bl_def uint_bl) apply (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop @@ -3495,7 +3495,7 @@ lemmas slice_id = trans [OF ucast_slice [symmetric] ucast_id] lemma revcast_slice1': - "rc = revcast w ==> slice1 (size rc) w = rc" + "rc = revcast w \ slice1 (size rc) w = rc" unfolding slice1_def revcast_def' by (simp add : word_size) lemmas revcast_slice1 = refl [THEN revcast_slice1'] @@ -3522,7 +3522,7 @@ done lemma rev_slice': - "res = slice n (word_reverse w) ==> n + k + size res = size w ==> + "res = slice n (word_reverse w) \ n + k + size res = size w \ res = word_reverse (slice k w)" apply (unfold slice_def word_size) apply clarify @@ -3569,8 +3569,8 @@ subsection "Split and cat" -lemmas word_split_bin' = word_split_def [THEN meta_eq_to_obj_eq, standard] -lemmas word_cat_bin' = word_cat_def [THEN meta_eq_to_obj_eq, standard] +lemmas word_split_bin' = word_split_def +lemmas word_cat_bin' = word_cat_def lemma word_rsplit_no: "(word_rsplit (number_of bin :: 'b :: len0 word) :: 'a word list) = @@ -3584,7 +3584,7 @@ [unfolded bin_rsplitl_def bin_rsplit_l [symmetric]] lemma test_bit_cat: - "wc = word_cat a b ==> wc !! n = (n < size wc & + "wc = word_cat a b \ wc !! n = (n < size wc & (if n < size b then b !! n else a !! (n - size b)))" apply (unfold word_cat_bin' test_bit_bin) apply (auto simp add : word_ubin.eq_norm nth_bintr bin_nth_cat word_size) @@ -3617,7 +3617,7 @@ "of_bl (x#xs) = of_bool x * 2^length xs + of_bl xs" by (cases x) (simp_all add: of_bl_True) -lemma split_uint_lem: "bin_split n (uint (w :: 'a :: len0 word)) = (a, b) ==> +lemma split_uint_lem: "bin_split n (uint (w :: 'a :: len0 word)) = (a, b) \ a = bintrunc (len_of TYPE('a) - n) a & b = bintrunc (len_of TYPE('a)) b" apply (frule word_ubin.norm_Rep [THEN ssubst]) apply (drule bin_split_trunc1) @@ -3627,7 +3627,7 @@ done lemma word_split_bl': - "std = size c - size b ==> (word_split c = (a, b)) ==> + "std = size c - size b \ (word_split c = (a, b)) \ (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c)))" apply (unfold word_split_bin') apply safe @@ -3653,7 +3653,7 @@ apply (simp add : word_ubin.norm_eq_iff [symmetric]) done -lemma word_split_bl: "std = size c - size b ==> +lemma word_split_bl: "std = size c - size b \ (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c))) <-> word_split c = (a, b)" apply (rule iffI) @@ -3714,7 +3714,7 @@ -- "limited hom result" lemma word_cat_hom: "len_of TYPE('a::len0) <= len_of TYPE('b::len0) + len_of TYPE ('c::len0) - ==> + \ (word_cat (word_of_int w :: 'b word) (b :: 'c word) :: 'a word) = word_of_int (bin_cat w (size b) (uint b))" apply (unfold word_cat_def word_size) @@ -3723,7 +3723,7 @@ done lemma word_cat_split_alt: - "size w <= size u + size v ==> word_split w = (u, v) ==> word_cat u v = w" + "size w <= size u + size v \ word_split w = (u, v) \ word_cat u v = w" apply (rule word_eqI) apply (drule test_bit_split) apply (clarsimp simp add : test_bit_cat word_size) @@ -3738,14 +3738,14 @@ subsubsection "Split and slice" lemma split_slices: - "word_split w = (u, v) ==> u = slice (size v) w & v = slice 0 w" + "word_split w = (u, v) \ u = slice (size v) w & v = slice 0 w" apply (drule test_bit_split) apply (rule conjI) apply (rule word_eqI, clarsimp simp: nth_slice word_size)+ done lemma slice_cat1': - "wc = word_cat a b ==> size wc >= size a + size b ==> slice (size b) wc = a" + "wc = word_cat a b \ size wc >= size a + size b \ slice (size b) wc = a" apply safe apply (rule word_eqI) apply (simp add: nth_slice test_bit_cat word_size) @@ -3755,8 +3755,8 @@ lemmas slice_cat2 = trans [OF slice_id word_cat_id] lemma cat_slices: - "a = slice n c ==> b = slice 0 c ==> n = size b ==> - size a + size b >= size c ==> word_cat a b = c" + "a = slice n c \ b = slice 0 c \ n = size b \ + size a + size b >= size c \ word_cat a b = c" apply safe apply (rule word_eqI) apply (simp add: nth_slice test_bit_cat word_size) @@ -3765,7 +3765,7 @@ done lemma word_split_cat_alt: - "w = word_cat u v ==> size u + size v <= size w ==> word_split w = (u, v)" + "w = word_cat u v \ size u + size v <= size w \ word_split w = (u, v)" apply (case_tac "word_split ?w") apply (rule trans, assumption) apply (drule test_bit_split) @@ -3794,8 +3794,8 @@ by (simp add: bin_rsplit_aux_simp_alt Let_def split: Product_Type.split_split) lemma test_bit_rsplit: - "sw = word_rsplit w ==> m < size (hd sw :: 'a :: len word) ==> - k < length sw ==> (rev sw ! k) !! m = (w !! (k * size (hd sw) + m))" + "sw = word_rsplit w \ m < size (hd sw :: 'a :: len word) \ + k < length sw \ (rev sw ! k) !! m = (w !! (k * size (hd sw) + m))" apply (unfold word_rsplit_def word_test_bit_def) apply (rule trans) apply (rule_tac f = "%x. bin_nth x m" in arg_cong) @@ -3812,7 +3812,7 @@ apply (erule bin_rsplit_size_sign [OF len_gt_0 refl]) done -lemma word_rcat_bl: "word_rcat wl == of_bl (concat (map to_bl wl))" +lemma word_rcat_bl: "word_rcat wl = of_bl (concat (map to_bl wl))" unfolding word_rcat_def to_bl_def' of_bl_def by (clarsimp simp add : bin_rcat_bl) @@ -3825,7 +3825,7 @@ lemmas td_gal_lt_len = len_gt_0 [THEN td_gal_lt, standard] lemma nth_rcat_lem' [rule_format] : - "sw = size (hd wl :: 'a :: len word) ==> (ALL n. n < size wl * sw --> + "sw = size (hd wl :: 'a :: len word) \ (ALL n. n < size wl * sw --> rev (concat (map to_bl wl)) ! n = rev (to_bl (rev wl ! (n div sw))) ! (n mod sw))" apply (unfold word_size) @@ -3840,7 +3840,7 @@ lemmas nth_rcat_lem = refl [THEN nth_rcat_lem', unfolded word_size] lemma test_bit_rcat: - "sw = size (hd wl :: 'a :: len word) ==> rc = word_rcat wl ==> rc !! n = + "sw = size (hd wl :: 'a :: len word) \ rc = word_rcat wl \ rc !! n = (n < size rc & n div sw < size wl & (rev wl) ! (n div sw) !! (n mod sw))" apply (unfold word_rcat_bl word_size) apply (clarsimp simp add : @@ -3862,8 +3862,8 @@ -- "lazy way of expressing that u and v, and su and sv, have same types" lemma word_rsplit_len_indep': - "[u,v] = p ==> [su,sv] = q ==> word_rsplit u = su ==> - word_rsplit v = sv ==> length su = length sv" + "[u,v] = p \ [su,sv] = q \ word_rsplit u = su \ + word_rsplit v = sv \ length su = length sv" apply (unfold word_rsplit_def) apply (auto simp add : bin_rsplit_len_indep) done @@ -3871,7 +3871,7 @@ lemmas word_rsplit_len_indep = word_rsplit_len_indep' [OF refl refl refl refl] lemma length_word_rsplit_size: - "n = len_of TYPE ('a :: len) ==> + "n = len_of TYPE ('a :: len) \ (length (word_rsplit w :: 'a word list) <= m) = (size w <= m * n)" apply (unfold word_rsplit_def word_size) apply (clarsimp simp add : bin_rsplit_len_le) @@ -3881,12 +3881,12 @@ length_word_rsplit_size [unfolded Not_eq_iff linorder_not_less [symmetric]] lemma length_word_rsplit_exp_size: - "n = len_of TYPE ('a :: len) ==> + "n = len_of TYPE ('a :: len) \ length (word_rsplit w :: 'a word list) = (size w + n - 1) div n" unfolding word_rsplit_def by (clarsimp simp add : word_size bin_rsplit_len) lemma length_word_rsplit_even_size: - "n = len_of TYPE ('a :: len) ==> size w = m * n ==> + "n = len_of TYPE ('a :: len) \ size w = m * n \ length (word_rsplit w :: 'a word list) = m" by (clarsimp simp add : length_word_rsplit_exp_size given_quot_alt) @@ -3907,8 +3907,8 @@ done lemma size_word_rsplit_rcat_size': - "word_rcat (ws :: 'a :: len word list) = frcw ==> - size frcw = length ws * len_of TYPE ('a) ==> + "word_rcat (ws :: 'a :: len word list) = frcw \ + size frcw = length ws * len_of TYPE ('a) \ size (hd [word_rsplit frcw, ws]) = size ws" apply (clarsimp simp add : word_size length_word_rsplit_exp_size') apply (fast intro: given_quot_alt) @@ -3924,8 +3924,8 @@ by (auto simp: add_commute) lemma word_rsplit_rcat_size': - "word_rcat (ws :: 'a :: len word list) = frcw ==> - size frcw = length ws * len_of TYPE ('a) ==> word_rsplit frcw = ws" + "word_rcat (ws :: 'a :: len word list) = frcw \ + size frcw = length ws * len_of TYPE ('a) \ word_rsplit frcw = ws" apply (frule size_word_rsplit_rcat_size, assumption) apply (clarsimp simp add : word_size) apply (rule nth_equalityI, assumption) @@ -3957,7 +3957,7 @@ lemmas word_rot_defs = word_roti_def word_rotr_def word_rotl_def lemma rotate_eq_mod: - "m mod length xs = n mod length xs ==> rotate m xs = rotate n xs" + "m mod length xs = n mod length xs \ rotate m xs = rotate n xs" apply (rule box_equals) defer apply (rule rotate_conv_mod [symmetric])+ @@ -4049,11 +4049,11 @@ subsubsection "map, map2, commuting with rotate(r)" -lemma last_map: "xs ~= [] ==> last (map f xs) = f (last xs)" +lemma last_map: "xs ~= [] \ last (map f xs) = f (last xs)" by (induct xs) auto lemma butlast_map: - "xs ~= [] ==> butlast (map f xs) = map f (butlast xs)" + "xs ~= [] \ butlast (map f xs) = map f (butlast xs)" by (induct xs) auto lemma rotater1_map: "rotater1 (map f xs) = map f (rotater1 xs)" @@ -4085,7 +4085,7 @@ done lemma rotater1_zip: - "length xs = length ys ==> + "length xs = length ys \ rotater1 (zip xs ys) = zip (rotater1 xs) (rotater1 ys)" apply (unfold rotater1_def) apply (cases "xs") @@ -4094,7 +4094,7 @@ done lemma rotater1_map2: - "length xs = length ys ==> + "length xs = length ys \ rotater1 (map2 f xs ys) = map2 f (rotater1 xs) (rotater1 ys)" unfolding map2_def by (simp add: rotater1_map rotater1_zip) @@ -4104,12 +4104,12 @@ THEN rotater1_map2] lemma rotater_map2: - "length xs = length ys ==> + "length xs = length ys \ rotater n (map2 f xs ys) = map2 f (rotater n xs) (rotater n ys)" by (induct n) (auto intro!: lrth) lemma rotate1_map2: - "length xs = length ys ==> + "length xs = length ys \ rotate1 (map2 f xs ys) = map2 f (rotate1 xs) (rotate1 ys)" apply (unfold map2_def) apply (cases xs) @@ -4120,7 +4120,7 @@ length_rotate [symmetric], THEN rotate1_map2] lemma rotate_map2: - "length xs = length ys ==> + "length xs = length ys \ rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)" by (induct n) (auto intro!: lth) @@ -4177,11 +4177,11 @@ "word_roti (m + n) w = word_roti m (word_roti n w)" proof - have rotater_eq_lem: - "\m n xs. m = n ==> rotater m xs = rotater n xs" + "\m n xs. m = n \ rotater m xs = rotater n xs" by auto have rotate_eq_lem: - "\m n xs. m = n ==> rotate m xs = rotate n xs" + "\m n xs. m = n \ rotate m xs = rotate n xs" by auto note rpts [symmetric, standard] = @@ -4271,7 +4271,7 @@ simplified word_bl.Rep', standard] lemma bl_word_roti_dt': - "n = nat ((- i) mod int (size (w :: 'a :: len word))) ==> + "n = nat ((- i) mod int (size (w :: 'a :: len word))) \ to_bl (word_roti i w) = drop n (to_bl w) @ take n (to_bl w)" apply (unfold word_roti_def) apply (simp add: bl_word_rotl_dt bl_word_rotr_dt word_size) @@ -4457,12 +4457,12 @@ by (simp add: mask_bl word_rep_drop min_def) lemma map_replicate_True: - "n = length xs ==> + "n = length xs \ map (\(x,y). x & y) (zip xs (replicate n True)) = xs" by (induct xs arbitrary: n) auto lemma map_replicate_False: - "n = length xs ==> map (\(x,y). x & y) + "n = length xs \ map (\(x,y). x & y) (zip xs (replicate n False)) = replicate n False" by (induct xs arbitrary: n) auto @@ -4488,7 +4488,7 @@ qed lemma drop_rev_takefill: - "length xs \ n ==> + "length xs \ n \ drop (n - length xs) (rev (takefill False n (rev xs))) = xs" by (simp add: takefill_alt rev_take) @@ -4547,7 +4547,7 @@ word_size) lemma unat_sub: - "b <= a ==> unat (a - b) = unat a - unat b" + "b <= a \ unat (a - b) = unat a - unat b" by (simp add: unat_def uint_sub_if_size word_le_def nat_diff_distrib) lemmas word_less_sub1_numberof [simp] = @@ -4633,7 +4633,7 @@ done definition word_rec :: "'a \ ('b::len word \ 'a \ 'a) \ 'b word \ 'a" where - "word_rec forZero forSuc n \ nat_rec forZero (forSuc \ of_nat) (unat n)" + "word_rec forZero forSuc n = nat_rec forZero (forSuc \ of_nat) (unat n)" lemma word_rec_0: "word_rec z s 0 = z" by (simp add: word_rec_def) diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/ZF/Games.thy --- a/src/HOL/ZF/Games.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/ZF/Games.thy Tue Nov 30 21:54:15 2010 +0100 @@ -893,9 +893,9 @@ have "(\ g h. {Abs_Pg (eq_game_rel `` {plus_game g h})}) respects2 eq_game_rel" apply (simp add: congruent2_def) apply (auto simp add: eq_game_rel_def eq_game_def) - apply (rule_tac y="plus_game y1 z2" in ge_game_trans) + apply (rule_tac y="plus_game a ba" in ge_game_trans) apply (simp add: ge_plus_game_left[symmetric] ge_plus_game_right[symmetric])+ - apply (rule_tac y="plus_game z1 y2" in ge_game_trans) + apply (rule_tac y="plus_game b aa" in ge_game_trans) apply (simp add: ge_plus_game_left[symmetric] ge_plus_game_right[symmetric])+ done then show ?thesis diff -r 47ff261431c4 -r edd1e0764da1 src/HOL/ex/Dedekind_Real.thy --- a/src/HOL/ex/Dedekind_Real.thy Tue Nov 30 18:22:43 2010 +0100 +++ b/src/HOL/ex/Dedekind_Real.thy Tue Nov 30 21:54:15 2010 +0100 @@ -1288,7 +1288,7 @@ proof - have "(\z w. (\(x,y). (\(u,v). {Abs_Real (realrel `` {(x+u, y+v)})}) w) z) respects2 realrel" - by (simp add: congruent2_def, blast intro: real_add_congruent2_lemma) + by (auto simp add: congruent2_def, blast intro: real_add_congruent2_lemma) thus ?thesis by (simp add: real_add_def UN_UN_split_split_eq UN_equiv_class2 [OF equiv_realrel equiv_realrel]) @@ -1297,7 +1297,7 @@ lemma real_minus: "- Abs_Real(realrel``{(x,y)}) = Abs_Real(realrel `` {(y,x)})" proof - have "(\(x,y). {Abs_Real (realrel``{(y,x)})}) respects realrel" - by (simp add: congruent_def add_commute) + by (auto simp add: congruent_def add_commute) thus ?thesis by (simp add: real_minus_def UN_equiv_class [OF equiv_realrel]) qed