# HG changeset patch # User paulson # Date 1653911171 -3600 # Node ID eded3fe9e600f04a4d9d8930908b6cf45d4ea3e6 # Parent d8ee3e4d74ef5f7d2e8e25c0ba4015f49c6832d8 Five slightly useful lemmas diff -r d8ee3e4d74ef -r eded3fe9e600 src/HOL/Analysis/Complex_Transcendental.thy --- a/src/HOL/Analysis/Complex_Transcendental.thy Sun May 29 23:49:58 2022 +0200 +++ b/src/HOL/Analysis/Complex_Transcendental.thy Mon May 30 12:46:11 2022 +0100 @@ -491,6 +491,27 @@ finally show ?thesis . qed +lemma cos_gt_neg1: + assumes "(t::real) \ {-pi<.. -1" +proof - + have "cos t \ -1" + by simp + moreover have "cos t \ -1" + proof + assume "cos t = -1" + then obtain n where n: "t = (2 * of_int n + 1) * pi" + by (subst (asm) cos_eq_minus1) auto + from assms have "t / pi \ {-1<..<1}" + by (auto simp: field_simps) + also from n have "t / pi = of_int (2 * n + 1)" + by auto + finally show False + by auto + qed + ultimately show ?thesis by linarith +qed + lemma dist_exp_i_1: "norm(exp(\ * of_real t) - 1) = 2 * \sin(t / 2)\" proof - have "sqrt (2 - cos t * 2) = 2 * \sin (t / 2)\" @@ -529,7 +550,7 @@ qed next assume ?rhs - then consider n::int where "w = z + of_real (2 * of_int n * pi)" + then consider n::int where "w = z + of_real (2 * of_int n * pi)" | n::int where " w = -z + of_real ((2 * of_int n + 1) * pi)" using Ints_cases by blast then show ?lhs @@ -540,7 +561,7 @@ by (auto simp: algebra_simps) next case 2 - then show ?thesis + then show ?thesis using Periodic_Fun.sin.plus_of_int [of "-z" "n"] apply (simp add: algebra_simps) by (metis add.commute add.inverse_inverse add_diff_cancel_left diff_add_cancel sin_plus_pi) @@ -1051,7 +1072,7 @@ unfolding nonneg_Reals_def by fastforce lemma Arg2pi_eq_pi: "Arg2pi z = pi \ z \ \ \ Re z < 0" - using Arg2pi_le_pi [of z] Arg2pi_lt_pi [of z] Arg2pi_eq_0 [of z] Arg2pi_ge_0 [of z] + using Arg2pi_le_pi [of z] Arg2pi_lt_pi [of z] Arg2pi_eq_0 [of z] Arg2pi_ge_0 [of z] by (fastforce simp: complex_is_Real_iff) lemma Arg2pi_eq_0_pi: "Arg2pi z = 0 \ Arg2pi z = pi \ z \ \" @@ -1303,7 +1324,7 @@ have 1: "open ?U" by (simp add: open_Collect_conj open_halfspace_Im_gt open_halfspace_Im_lt) have 2: "\x. x \ ?U \ (exp has_derivative blinfun_apply(Blinfun ((*) (exp x)))) (at x)" - by (simp add: bounded_linear_Blinfun_apply bounded_linear_mult_right has_field_derivative_imp_has_derivative) + by (simp add: bounded_linear_Blinfun_apply bounded_linear_mult_right has_field_derivative_imp_has_derivative) have 3: "continuous_on ?U (\x. Blinfun ((*) (exp x)))" unfolding blinfun_mult_right.abs_eq [symmetric] by (intro continuous_intros) have 4: "Ln z \ ?U" @@ -1486,7 +1507,7 @@ also have A: "summable (\n. norm z^2 * (inverse (real_of_nat (Suc (Suc n))) * cmod z ^ n))" by (rule summable_mult, rule summable_comparison_test_ev[OF _ summable_geometric[of "norm z"]]) (auto simp: assms field_simps intro!: always_eventually) - hence "norm (\i. (-(z^2)) * inverse (of_nat (i+2)) * (-z)^i) + hence "norm (\i. (-(z^2)) * inverse (of_nat (i+2)) * (-z)^i) \ (\i. norm (-(z^2) * inverse (of_nat (i+2)) * (-z)^i))" by (intro summable_norm) (auto simp: norm_power norm_inverse norm_mult mult_ac simp del: of_nat_add of_nat_Suc) @@ -1525,10 +1546,10 @@ by auto have "\Im w\ < pi/2 \ 0 < Re(exp w)" proof - assume "\Im w\ < pi/2" then show "0 < Re(exp w)" + assume "\Im w\ < pi/2" then show "0 < Re(exp w)" by (auto simp: Re_exp cos_gt_zero_pi split: if_split_asm) next - assume R: "0 < Re(exp w)" then + assume R: "0 < Re(exp w)" then have "\Im w\ \ pi/2" by (metis cos_minus cos_pi_half mult_eq_0_iff Re_exp abs_if order_less_irrefl) then show "\Im w\ < pi/2" @@ -1788,7 +1809,7 @@ assumes "z \ 0" shows "Arg z = Im (Ln z)" proof (rule cis_Arg_unique) show "sgn z = cis (Im (Ln z))" - by (metis assms exp_Ln exp_eq_polar nonzero_mult_div_cancel_left norm_eq_zero + by (metis assms exp_Ln exp_eq_polar nonzero_mult_div_cancel_left norm_eq_zero norm_exp_eq_Re of_real_eq_0_iff sgn_eq) show "- pi < Im (Ln z)" by (simp add: assms mpi_less_Im_Ln) @@ -2127,7 +2148,7 @@ consider "Re z < 0" | "Im z \ 0" using assms using complex_nonneg_Reals_iff not_le by blast then have [simp]: "(\z. Im (Ln (- z)) + pi) \z\ Arg2pi z" - using "*" by (simp add: Arg2pi_Ln Arg2pi_gt_0 assms continuous_within) + using "*" by (simp add: Arg2pi_Ln Arg2pi_gt_0 assms continuous_within) show ?thesis unfolding continuous_at proof (rule Lim_transform_within_open) @@ -3143,7 +3164,7 @@ have ne: "1 + x\<^sup>2 \ 0" by (metis power_one sum_power2_eq_zero_iff zero_neq_one) have ne1: "1 + \ * complex_of_real x \ 0" - using Complex_eq complex_eq_cancel_iff2 by fastforce + using Complex_eq complex_eq_cancel_iff2 by fastforce have "Re (Ln ((1 - \ * x) * inverse (1 + \ * x))) = 0" apply (rule norm_exp_imaginary) using ne @@ -3822,7 +3843,7 @@ fix x' assume "- (pi / 2) \ x'" "x' \ pi / 2" "x = sin x'" then show "x' = Re (Arcsin (complex_of_real (sin x')))" - unfolding sin_of_real [symmetric] + unfolding sin_of_real [symmetric] by (subst Arcsin_sin) auto qed diff -r d8ee3e4d74ef -r eded3fe9e600 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Sun May 29 23:49:58 2022 +0200 +++ b/src/HOL/Complex.thy Mon May 30 12:46:11 2022 +0100 @@ -729,6 +729,12 @@ lemma Im_sum[simp]: "Im (sum f s) = (\x\s. Im(f x))" by (induct s rule: infinite_finite_induct) auto +lemma sum_Re_le_cmod: "(\i\I. Re (z i)) \ cmod (\i\I. z i)" + by (metis Re_sum complex_Re_le_cmod) + +lemma sum_Im_le_cmod: "(\i\I. Im (z i)) \ cmod (\i\I. z i)" + by (smt (verit, best) Im_sum abs_Im_le_cmod sum.cong) + lemma sums_complex_iff: "f sums x \ ((\x. Re (f x)) sums Re x) \ ((\x. Im (f x)) sums Im x)" unfolding sums_def tendsto_complex_iff Im_sum Re_sum .. diff -r d8ee3e4d74ef -r eded3fe9e600 src/HOL/Conditionally_Complete_Lattices.thy --- a/src/HOL/Conditionally_Complete_Lattices.thy Sun May 29 23:49:58 2022 +0200 +++ b/src/HOL/Conditionally_Complete_Lattices.thy Mon May 30 12:46:11 2022 +0100 @@ -47,6 +47,8 @@ end +subsection \Preorders\ + context preorder begin @@ -172,6 +174,8 @@ using bdd_below_image_antimono[of uminus X] bdd_above_image_antimono[of uminus "uminus`X"] by (auto simp: antimono_def image_image) +subsection \Lattices\ + context lattice begin @@ -231,6 +235,8 @@ \ +subsection \Conditionally complete lattices\ + class conditionally_complete_lattice = lattice + Sup + Inf + assumes cInf_lower: "x \ X \ bdd_below X \ Inf X \ x" and cInf_greatest: "X \ {} \ (\x. x \ X \ z \ x) \ z \ Inf X" @@ -448,6 +454,21 @@ end +text \The special case of well-orderings\ + +lemma wellorder_InfI: + fixes k :: "'a::{wellorder,conditionally_complete_lattice}" + assumes "k \ A" shows "Inf A \ A" + using wellorder_class.LeastI [of "\x. x \ A" k] + by (simp add: Least_le assms cInf_eq_minimum) + +lemma wellorder_Inf_le1: + fixes k :: "'a::{wellorder,conditionally_complete_lattice}" + assumes "k \ A" shows "Inf A \ k" + by (meson Least_le assms bdd_below.I cInf_lower) + +subsection \Complete lattices\ + instance complete_lattice \ conditionally_complete_lattice by standard (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest) @@ -530,6 +551,8 @@ end +subsection \Instances\ + instance complete_linorder < conditionally_complete_linorder .. @@ -763,11 +786,12 @@ and bdd: "bdd_above (f ` A)" "bdd_below (f ` A)" and a: "a \ A" shows "f a = (\x\A. f x)" -apply (rule antisym) -using a bdd -apply (auto simp: cINF_lower) -apply (metis eq cSUP_upper) -done +proof (rule antisym) + show "f a \ \ (f ` A)" + by (metis a bdd(1) eq cSUP_upper) + show "\ (f ` A) \ f a" + using a bdd by (auto simp: cINF_lower) +qed lemma cSUP_UNION: fixes f :: "_ \ 'b::conditionally_complete_lattice"