# HG changeset patch # User wenzelm # Date 1378850459 -7200 # Node ID ee1bdeb9e0ed6e1bac801b93c92c989113637dec # Parent 706f7edea3d402abe8725535499b84898df84f1f tuned proofs; diff -r 706f7edea3d4 -r ee1bdeb9e0ed src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Sep 10 23:50:03 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Wed Sep 11 00:00:59 2013 +0200 @@ -8206,35 +8206,89 @@ subsection {* Stronger form with finite number of exceptional points. *} -lemma fundamental_theorem_of_calculus_interior_strong: fixes f::"real \ 'a::banach" - assumes"finite s" "a \ b" "continuous_on {a..b} f" - "\x\{a<..{a<.. c" "c \ b" by auto - thus ?thesis apply(subst *) apply(rule has_integral_combine) apply assumption+ - apply(rule_tac[!] Suc(1)[OF cs(3)]) using Suc(3) unfolding cs - proof- show "continuous_on {a..c} f" "continuous_on {c..b} f" - apply(rule_tac[!] continuous_on_subset[OF Suc(5)]) using True by auto +lemma fundamental_theorem_of_calculus_interior_strong: + fixes f :: "real \ 'a::banach" + assumes "finite s" + and "a \ b" + and "continuous_on {a..b} f" + and "\x\{a<.. {a<.. c" "c \ b" + by auto + then show ?thesis + apply (subst *) + apply (rule has_integral_combine) + apply assumption+ + apply (rule_tac[!] Suc(1)[OF cs(3)]) + using Suc(3) + unfolding cs + proof - + show "continuous_on {a..c} f" "continuous_on {c..b} f" + apply (rule_tac[!] continuous_on_subset[OF Suc(5)]) + using True + apply auto + done let ?P = "\i j. \x\{i<.. 'a::banach" - assumes "finite s" "a \ b" "continuous_on {a..b} f" - "\x\{a..b} - s. (f has_vector_derivative f'(x)) (at x)" + show "?P a c" "?P c b" + apply safe + apply (rule_tac[!] Suc(6)[rule_format]) + using True + unfolding cs + apply auto + done + qed auto + qed +qed + +lemma fundamental_theorem_of_calculus_strong: + fixes f :: "real \ 'a::banach" + assumes "finite s" + and "a \ b" + and "continuous_on {a..b} f" + and "\x\{a..b} - s. (f has_vector_derivative f'(x)) (at x)" shows "(f' has_integral (f(b) - f(a))) {a..b}" - apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f']) - using assms(4) by auto - -lemma indefinite_integral_continuous_left: fixes f::"real \ 'a::banach" + apply (rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f']) + using assms(4) + apply auto + done + +lemma indefinite_integral_continuous_left: + fixes f::"real \ 'a::banach" assumes "f integrable_on {a..b}" "a < c" "c \ b" "0 < e" obtains d where "0 < d" "\t. c - d < t \ t \ c \ norm(integral {a..c} f - integral {a..t} f) < e" proof- have "\w>0. \t. c - w < t \ t < c \ norm(f c) * norm(c - t) < e / 3" @@ -10162,7 +10216,8 @@ apply (rule_tac x=N in exI) proof safe case goal1 - have *:"\y ix. y < i + r \ i \ ix \ ix \ y \ abs(ix - i) < r" by arith + have *: "\y ix. y < i + r \ i \ ix \ ix \ y \ abs(ix - i) < r" + by arith show ?case unfolding real_norm_def apply (rule *[rule_format,OF y(2)])