# HG changeset patch # User haftmann # Date 1413480386 -7200 # Node ID ee5bf401cfa7f55b0ff7f7e3c2e8421f16163afe # Parent ddd124805260cb5c0b39eb9f18279899f3c6a021 tuned facts on even and power diff -r ddd124805260 -r ee5bf401cfa7 src/HOL/Parity.thy --- a/src/HOL/Parity.thy Thu Oct 16 19:26:14 2014 +0200 +++ b/src/HOL/Parity.thy Thu Oct 16 19:26:26 2014 +0200 @@ -287,6 +287,10 @@ "even (Suc n) = odd n" by (simp add: even_def two_dvd_Suc_iff) +lemma odd_pos: + "odd (n :: nat) \ 0 < n" + by (auto simp add: even_def intro: classical) + lemma even_diff_nat [simp]: fixes m n :: nat shows "even (m - n) \ m < n \ even (m + n)" @@ -301,6 +305,167 @@ by (simp add: even_int_iff [symmetric]) +subsubsection {* Parity and powers *} + +context comm_ring_1 +begin + +lemma neg_power_if: + "(- a) ^ n = (if even n then a ^ n else - (a ^ n))" + by (induct n) simp_all + +lemma power_minus_even [simp]: + "even n \ (- a) ^ n = a ^ n" + by (simp add: neg_power_if) + +lemma power_minus_odd [simp]: + "odd n \ (- a) ^ n = - (a ^ n)" + by (simp add: neg_power_if) + +lemma neg_one_even_power [simp]: + "even n \ (- 1) ^ n = 1" + by (simp add: neg_power_if) + +lemma neg_one_odd_power [simp]: + "odd n \ (- 1) ^ n = - 1" + by (simp_all add: neg_power_if) + +end + +lemma zero_less_power_nat_eq_numeral [simp]: -- \FIXME move\ + "0 < (n :: nat) ^ numeral w \ 0 < n \ numeral w = (0 :: nat)" + by (fact nat_zero_less_power_iff) + +context linordered_idom +begin + +lemma power_eq_0_iff' [simp]: -- \FIXME move\ + "a ^ n = 0 \ a = 0 \ n > 0" + by (induct n) auto + +lemma power2_less_eq_zero_iff [simp]: -- \FIXME move\ + "a\<^sup>2 \ 0 \ a = 0" +proof (cases "a = 0") + case True then show ?thesis by simp +next + case False then have "a < 0 \ a > 0" by auto + then have "a\<^sup>2 > 0" by auto + then have "\ a\<^sup>2 \ 0" by (simp add: not_le) + with False show ?thesis by simp +qed + +lemma zero_le_even_power: + "even n \ 0 \ a ^ n" + by (auto simp add: even_def elim: dvd_class.dvdE) + +lemma zero_le_odd_power: + "odd n \ 0 \ a ^ n \ 0 \ a" + by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) + +lemma zero_le_power_iff [presburger]: + "0 \ a ^ n \ 0 \ a \ even n" +proof (cases "even n") + case True + then have "2 dvd n" by (simp add: even_def) + then obtain k where "n = 2 * k" .. + thus ?thesis by (simp add: zero_le_even_power True) +next + case False + then obtain k where "n = 2 * k + 1" .. + moreover have "a ^ (2 * k) \ 0 \ a = 0" + by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff) + ultimately show ?thesis + by (auto simp add: zero_le_mult_iff zero_le_even_power) +qed + +lemma zero_le_power_eq [presburger]: -- \FIXME weaker version of @{text zero_le_power_iff}\ + "0 \ a ^ n \ even n \ odd n \ 0 \ a" + using zero_le_power_iff [of a n] by auto + +lemma zero_less_power_eq [presburger]: + "0 < a ^ n \ n = 0 \ even n \ a \ 0 \ odd n \ 0 < a" +proof - + have [simp]: "0 = a ^ n \ a = 0 \ n > 0" + unfolding power_eq_0_iff' [of a n, symmetric] by blast + show ?thesis + unfolding less_le zero_le_power_iff by auto +qed + +lemma power_less_zero_eq [presburger]: + "a ^ n < 0 \ odd n \ a < 0" + unfolding not_le [symmetric] zero_le_power_eq by auto + +lemma power_le_zero_eq [presburger]: + "a ^ n \ 0 \ n > 0 \ (odd n \ a \ 0 \ even n \ a = 0)" + unfolding not_less [symmetric] zero_less_power_eq by auto + +lemma power_even_abs: + "even n \ \a\ ^ n = a ^ n" + using power_abs [of a n] by (simp add: zero_le_even_power) + +lemma power_mono_even: + assumes "even n" and "\a\ \ \b\" + shows "a ^ n \ b ^ n" +proof - + have "0 \ \a\" by auto + with `\a\ \ \b\` + have "\a\ ^ n \ \b\ ^ n" by (rule power_mono) + with `even n` show ?thesis by (simp add: power_even_abs) +qed + +lemma power_mono_odd: + assumes "odd n" and "a \ b" + shows "a ^ n \ b ^ n" +proof (cases "b < 0") + case True with `a \ b` have "- b \ - a" and "0 \ - b" by auto + hence "(- b) ^ n \ (- a) ^ n" by (rule power_mono) + with `odd n` show ?thesis by simp +next + case False then have "0 \ b" by auto + show ?thesis + proof (cases "a < 0") + case True then have "n \ 0" and "a \ 0" using `odd n` [THEN odd_pos] by auto + then have "a ^ n \ 0" unfolding power_le_zero_eq using `odd n` by auto + moreover + from `0 \ b` have "0 \ b ^ n" by auto + ultimately show ?thesis by auto + next + case False then have "0 \ a" by auto + with `a \ b` show ?thesis using power_mono by auto + qed +qed + +text {* Simplify, when the exponent is a numeral *} + +lemma zero_le_power_eq_numeral [simp]: + "0 \ a ^ numeral w \ even (numeral w :: nat) \ odd (numeral w :: nat) \ 0 \ a" + by (fact zero_le_power_eq) + +lemma zero_less_power_eq_numeral [simp]: + "0 < a ^ numeral w \ numeral w = (0 :: nat) + \ even (numeral w :: nat) \ a \ 0 \ odd (numeral w :: nat) \ 0 < a" + by (fact zero_less_power_eq) + +lemma power_le_zero_eq_numeral [simp]: + "a ^ numeral w \ 0 \ (0 :: nat) < numeral w + \ (odd (numeral w :: nat) \ a \ 0 \ even (numeral w :: nat) \ a = 0)" + by (fact power_le_zero_eq) + +lemma power_less_zero_eq_numeral [simp]: + "a ^ numeral w < 0 \ odd (numeral w :: nat) \ a < 0" + by (fact power_less_zero_eq) + +lemma power_eq_0_iff_numeral [simp]: + "a ^ numeral w = (0 :: nat) \ a = 0 \ numeral w \ (0 :: nat)" + by (fact power_eq_0_iff) + +lemma power_even_abs_numeral [simp]: + "even (numeral w :: nat) \ \a\ ^ numeral w = a ^ numeral w" + by (fact power_even_abs) + +end + + subsubsection {* Tools setup *} declare transfer_morphism_int_nat [transfer add return: @@ -391,149 +556,5 @@ lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" by presburger - -subsubsection {* Parity and powers *} - -lemma (in comm_ring_1) neg_power_if: - "(- a) ^ n = (if even n then (a ^ n) else - (a ^ n))" - by (induct n) simp_all - -lemma (in comm_ring_1) - shows neg_one_even_power [simp]: "even n \ (- 1) ^ n = 1" - and neg_one_odd_power [simp]: "odd n \ (- 1) ^ n = - 1" - by (simp_all add: neg_power_if) - -lemma zero_le_even_power: "even n ==> - 0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n" - apply (simp add: even_def) - apply (erule dvdE) - apply (erule ssubst) - unfolding mult.commute [of 2] - unfolding power_mult power2_eq_square - apply (rule zero_le_square) - done - -lemma zero_le_odd_power: - "odd n \ 0 \ (x::'a::{linordered_idom}) ^ n \ 0 \ x" - by (erule oddE) (auto simp: power_add zero_le_mult_iff mult_2 order_antisym_conv) - -lemma zero_le_power_eq [presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) = - (even n | (odd n & 0 <= x))" - apply auto - apply (subst zero_le_odd_power [symmetric]) - apply assumption+ - apply (erule zero_le_even_power) - done - -lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) = - (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" - unfolding order_less_le zero_le_power_eq by auto - -lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) = - (odd n & x < 0)" - apply (subst linorder_not_le [symmetric])+ - apply (subst zero_le_power_eq) - apply auto - done - -lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) = - (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" - apply (subst linorder_not_less [symmetric])+ - apply (subst zero_less_power_eq) - apply auto - done - -lemma power_even_abs: "even n ==> - (abs (x::'a::{linordered_idom}))^n = x^n" - apply (subst power_abs [symmetric]) - apply (simp add: zero_le_even_power) - done - -lemma power_minus_even [simp]: "even n ==> - (- x)^n = (x^n::'a::{comm_ring_1})" - apply (subst power_minus) - apply simp - done - -lemma power_minus_odd [simp]: "odd n ==> - (- x)^n = - (x^n::'a::{comm_ring_1})" - apply (subst power_minus) - apply simp - done - -lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}" - assumes "even n" and "\x\ \ \y\" - shows "x^n \ y^n" -proof - - have "0 \ \x\" by auto - with `\x\ \ \y\` - have "\x\^n \ \y\^n" by (rule power_mono) - thus ?thesis unfolding power_even_abs[OF `even n`] . -qed - -lemma odd_pos: "odd (n::nat) \ 0 < n" by presburger - -lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}" - assumes "odd n" and "x \ y" - shows "x^n \ y^n" -proof (cases "y < 0") - case True with `x \ y` have "-y \ -x" and "0 \ -y" by auto - hence "(-y)^n \ (-x)^n" by (rule power_mono) - thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto -next - case False - show ?thesis - proof (cases "x < 0") - case True hence "n \ 0" and "x \ 0" using `odd n`[THEN odd_pos] by auto - hence "x^n \ 0" unfolding power_le_zero_eq using `odd n` by auto - moreover - from `\ y < 0` have "0 \ y" by auto - hence "0 \ y^n" by auto - ultimately show ?thesis by auto - next - case False hence "0 \ x" by auto - with `x \ y` show ?thesis using power_mono by auto - qed -qed - -lemma (in linordered_idom) zero_le_power_iff [presburger]: - "0 \ a ^ n \ 0 \ a \ even n" -proof (cases "even n") - case True - then have "2 dvd n" by (simp add: even_def) - then obtain k where "n = 2 * k" .. - thus ?thesis by (simp add: zero_le_even_power True) -next - case False - then obtain k where "n = 2 * k + 1" .. - moreover have "a ^ (2 * k) \ 0 \ a = 0" - by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff) - ultimately show ?thesis - by (auto simp add: zero_le_mult_iff zero_le_even_power) -qed - -text {* Simplify, when the exponent is a numeral *} - -lemmas zero_le_power_eq_numeral [simp] = - zero_le_power_eq [of _ "numeral w"] for w - -lemmas zero_less_power_eq_numeral [simp] = - zero_less_power_eq [of _ "numeral w"] for w - -lemmas power_le_zero_eq_numeral [simp] = - power_le_zero_eq [of _ "numeral w"] for w - -lemmas power_less_zero_eq_numeral [simp] = - power_less_zero_eq [of _ "numeral w"] for w - -lemmas zero_less_power_nat_eq_numeral [simp] = - nat_zero_less_power_iff [of _ "numeral w"] for w - -lemmas power_eq_0_iff_numeral [simp] = - power_eq_0_iff [of _ "numeral w"] for w - -lemmas power_even_abs_numeral [simp] = - power_even_abs [of "numeral w" _] for w - end