# HG changeset patch # User wenzelm # Date 1354893933 -3600 # Node ID ee729dbd1b7f5734aac22711bd07a4defae73e57 # Parent 2e1b47e22fc6fbcab65d920436db60835c3fadb5 avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions; diff -r 2e1b47e22fc6 -r ee729dbd1b7f src/HOL/Divides.thy --- a/src/HOL/Divides.thy Fri Dec 07 14:30:00 2012 +0100 +++ b/src/HOL/Divides.thy Fri Dec 07 16:25:33 2012 +0100 @@ -9,8 +9,6 @@ imports Nat_Transfer begin -ML_file "~~/src/Provers/Arith/cancel_div_mod.ML" - subsection {* Syntactic division operations *} class div = dvd + diff -r 2e1b47e22fc6 -r ee729dbd1b7f src/HOL/List.thy --- a/src/HOL/List.thy Fri Dec 07 14:30:00 2012 +0100 +++ b/src/HOL/List.thy Fri Dec 07 16:25:33 2012 +0100 @@ -504,7 +504,228 @@ *) -ML_file "Tools/list_to_set_comprehension.ML" +ML {* +(* Simproc for rewriting list comprehensions applied to List.set to set + comprehension. *) + +signature LIST_TO_SET_COMPREHENSION = +sig + val simproc : simpset -> cterm -> thm option +end + +structure List_to_Set_Comprehension : LIST_TO_SET_COMPREHENSION = +struct + +(* conversion *) + +fun all_exists_conv cv ctxt ct = + (case Thm.term_of ct of + Const (@{const_name HOL.Ex}, _) $ Abs _ => + Conv.arg_conv (Conv.abs_conv (all_exists_conv cv o #2) ctxt) ct + | _ => cv ctxt ct) + +fun all_but_last_exists_conv cv ctxt ct = + (case Thm.term_of ct of + Const (@{const_name HOL.Ex}, _) $ Abs (_, _, Const (@{const_name HOL.Ex}, _) $ _) => + Conv.arg_conv (Conv.abs_conv (all_but_last_exists_conv cv o #2) ctxt) ct + | _ => cv ctxt ct) + +fun Collect_conv cv ctxt ct = + (case Thm.term_of ct of + Const (@{const_name Set.Collect}, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv cv ctxt) ct + | _ => raise CTERM ("Collect_conv", [ct])) + +fun Trueprop_conv cv ct = + (case Thm.term_of ct of + Const (@{const_name Trueprop}, _) $ _ => Conv.arg_conv cv ct + | _ => raise CTERM ("Trueprop_conv", [ct])) + +fun eq_conv cv1 cv2 ct = + (case Thm.term_of ct of + Const (@{const_name HOL.eq}, _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv1) cv2 ct + | _ => raise CTERM ("eq_conv", [ct])) + +fun conj_conv cv1 cv2 ct = + (case Thm.term_of ct of + Const (@{const_name HOL.conj}, _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv1) cv2 ct + | _ => raise CTERM ("conj_conv", [ct])) + +fun rewr_conv' th = Conv.rewr_conv (mk_meta_eq th) + +fun conjunct_assoc_conv ct = + Conv.try_conv + (rewr_conv' @{thm conj_assoc} then_conv conj_conv Conv.all_conv conjunct_assoc_conv) ct + +fun right_hand_set_comprehension_conv conv ctxt = + Trueprop_conv (eq_conv Conv.all_conv + (Collect_conv (all_exists_conv conv o #2) ctxt)) + + +(* term abstraction of list comprehension patterns *) + +datatype termlets = If | Case of (typ * int) + +fun simproc ss redex = + let + val ctxt = Simplifier.the_context ss + val thy = Proof_Context.theory_of ctxt + val set_Nil_I = @{thm trans} OF [@{thm set.simps(1)}, @{thm empty_def}] + val set_singleton = @{lemma "set [a] = {x. x = a}" by simp} + val inst_Collect_mem_eq = @{lemma "set A = {x. x : set A}" by simp} + val del_refl_eq = @{lemma "(t = t & P) == P" by simp} + fun mk_set T = Const (@{const_name List.set}, HOLogic.listT T --> HOLogic.mk_setT T) + fun dest_set (Const (@{const_name List.set}, _) $ xs) = xs + fun dest_singleton_list (Const (@{const_name List.Cons}, _) + $ t $ (Const (@{const_name List.Nil}, _))) = t + | dest_singleton_list t = raise TERM ("dest_singleton_list", [t]) + (* We check that one case returns a singleton list and all other cases + return [], and return the index of the one singleton list case *) + fun possible_index_of_singleton_case cases = + let + fun check (i, case_t) s = + (case strip_abs_body case_t of + (Const (@{const_name List.Nil}, _)) => s + | _ => (case s of NONE => SOME i | SOME _ => NONE)) + in + fold_index check cases NONE + end + (* returns (case_expr type index chosen_case) option *) + fun dest_case case_term = + let + val (case_const, args) = strip_comb case_term + in + (case try dest_Const case_const of + SOME (c, T) => + (case Datatype.info_of_case thy c of + SOME _ => + (case possible_index_of_singleton_case (fst (split_last args)) of + SOME i => + let + val (Ts, _) = strip_type T + val T' = List.last Ts + in SOME (List.last args, T', i, nth args i) end + | NONE => NONE) + | NONE => NONE) + | NONE => NONE) + end + (* returns condition continuing term option *) + fun dest_if (Const (@{const_name If}, _) $ cond $ then_t $ Const (@{const_name Nil}, _)) = + SOME (cond, then_t) + | dest_if _ = NONE + fun tac _ [] = rtac set_singleton 1 ORELSE rtac inst_Collect_mem_eq 1 + | tac ctxt (If :: cont) = + Splitter.split_tac [@{thm split_if}] 1 + THEN rtac @{thm conjI} 1 + THEN rtac @{thm impI} 1 + THEN Subgoal.FOCUS (fn {prems, context, ...} => + CONVERSION (right_hand_set_comprehension_conv (K + (conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_TrueI})) Conv.all_conv + then_conv + rewr_conv' @{lemma "(True & P) = P" by simp})) context) 1) ctxt 1 + THEN tac ctxt cont + THEN rtac @{thm impI} 1 + THEN Subgoal.FOCUS (fn {prems, context, ...} => + CONVERSION (right_hand_set_comprehension_conv (K + (conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_FalseI})) Conv.all_conv + then_conv rewr_conv' @{lemma "(False & P) = False" by simp})) context) 1) ctxt 1 + THEN rtac set_Nil_I 1 + | tac ctxt (Case (T, i) :: cont) = + let + val info = Datatype.the_info thy (fst (dest_Type T)) + in + (* do case distinction *) + Splitter.split_tac [#split info] 1 + THEN EVERY (map_index (fn (i', _) => + (if i' < length (#case_rewrites info) - 1 then rtac @{thm conjI} 1 else all_tac) + THEN REPEAT_DETERM (rtac @{thm allI} 1) + THEN rtac @{thm impI} 1 + THEN (if i' = i then + (* continue recursively *) + Subgoal.FOCUS (fn {prems, context, ...} => + CONVERSION (Thm.eta_conversion then_conv right_hand_set_comprehension_conv (K + ((conj_conv + (eq_conv Conv.all_conv (rewr_conv' (List.last prems)) then_conv + (Conv.try_conv (Conv.rewrs_conv (map mk_meta_eq (#inject info))))) + Conv.all_conv) + then_conv (Conv.try_conv (Conv.rewr_conv del_refl_eq)) + then_conv conjunct_assoc_conv)) context + then_conv (Trueprop_conv (eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt) => + Conv.repeat_conv + (all_but_last_exists_conv + (K (rewr_conv' + @{lemma "(EX x. x = t & P x) = P t" by simp})) ctxt)) context)))) 1) ctxt 1 + THEN tac ctxt cont + else + Subgoal.FOCUS (fn {prems, context, ...} => + CONVERSION + (right_hand_set_comprehension_conv (K + (conj_conv + ((eq_conv Conv.all_conv + (rewr_conv' (List.last prems))) then_conv + (Conv.rewrs_conv (map (fn th => th RS @{thm Eq_FalseI}) (#distinct info)))) + Conv.all_conv then_conv + (rewr_conv' @{lemma "(False & P) = False" by simp}))) context then_conv + Trueprop_conv + (eq_conv Conv.all_conv + (Collect_conv (fn (_, ctxt) => + Conv.repeat_conv + (Conv.bottom_conv + (K (rewr_conv' + @{lemma "(EX x. P) = P" by simp})) ctxt)) context))) 1) ctxt 1 + THEN rtac set_Nil_I 1)) (#case_rewrites info)) + end + fun make_inner_eqs bound_vs Tis eqs t = + (case dest_case t of + SOME (x, T, i, cont) => + let + val (vs, body) = strip_abs (Pattern.eta_long (map snd bound_vs) cont) + val x' = incr_boundvars (length vs) x + val eqs' = map (incr_boundvars (length vs)) eqs + val (constr_name, _) = nth (the (Datatype.get_constrs thy (fst (dest_Type T)))) i + val constr_t = + list_comb + (Const (constr_name, map snd vs ---> T), map Bound (((length vs) - 1) downto 0)) + val constr_eq = Const (@{const_name HOL.eq}, T --> T --> @{typ bool}) $ constr_t $ x' + in + make_inner_eqs (rev vs @ bound_vs) (Case (T, i) :: Tis) (constr_eq :: eqs') body + end + | NONE => + (case dest_if t of + SOME (condition, cont) => make_inner_eqs bound_vs (If :: Tis) (condition :: eqs) cont + | NONE => + if eqs = [] then NONE (* no rewriting, nothing to be done *) + else + let + val Type (@{type_name List.list}, [rT]) = fastype_of1 (map snd bound_vs, t) + val pat_eq = + (case try dest_singleton_list t of + SOME t' => + Const (@{const_name HOL.eq}, rT --> rT --> @{typ bool}) $ + Bound (length bound_vs) $ t' + | NONE => + Const (@{const_name Set.member}, rT --> HOLogic.mk_setT rT --> @{typ bool}) $ + Bound (length bound_vs) $ (mk_set rT $ t)) + val reverse_bounds = curry subst_bounds + ((map Bound ((length bound_vs - 1) downto 0)) @ [Bound (length bound_vs)]) + val eqs' = map reverse_bounds eqs + val pat_eq' = reverse_bounds pat_eq + val inner_t = + fold (fn (_, T) => fn t => HOLogic.exists_const T $ absdummy T t) + (rev bound_vs) (fold (curry HOLogic.mk_conj) eqs' pat_eq') + val lhs = term_of redex + val rhs = HOLogic.mk_Collect ("x", rT, inner_t) + val rewrite_rule_t = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) + in + SOME + ((Goal.prove ctxt [] [] rewrite_rule_t + (fn {context, ...} => tac context (rev Tis))) RS @{thm eq_reflection}) + end)) + in + make_inner_eqs [] [] [] (dest_set (term_of redex)) + end + +end +*} simproc_setup list_to_set_comprehension ("set xs") = {* K List_to_Set_Comprehension.simproc *} @@ -5664,7 +5885,57 @@ subsubsection {* Pretty lists *} -ML_file "Tools/list_code.ML" +ML {* +(* Code generation for list literals. *) + +signature LIST_CODE = +sig + val implode_list: string -> string -> Code_Thingol.iterm -> Code_Thingol.iterm list option + val default_list: int * string + -> (Code_Printer.fixity -> Code_Thingol.iterm -> Pretty.T) + -> Code_Printer.fixity -> Code_Thingol.iterm -> Code_Thingol.iterm -> Pretty.T + val add_literal_list: string -> theory -> theory +end; + +structure List_Code : LIST_CODE = +struct + +open Basic_Code_Thingol; + +fun implode_list nil' cons' t = + let + fun dest_cons (IConst { name = c, ... } `$ t1 `$ t2) = + if c = cons' + then SOME (t1, t2) + else NONE + | dest_cons _ = NONE; + val (ts, t') = Code_Thingol.unfoldr dest_cons t; + in case t' + of IConst { name = c, ... } => if c = nil' then SOME ts else NONE + | _ => NONE + end; + +fun default_list (target_fxy, target_cons) pr fxy t1 t2 = + Code_Printer.brackify_infix (target_fxy, Code_Printer.R) fxy ( + pr (Code_Printer.INFX (target_fxy, Code_Printer.X)) t1, + Code_Printer.str target_cons, + pr (Code_Printer.INFX (target_fxy, Code_Printer.R)) t2 + ); + +fun add_literal_list target = + let + fun pretty literals [nil', cons'] pr thm vars fxy [(t1, _), (t2, _)] = + case Option.map (cons t1) (implode_list nil' cons' t2) + of SOME ts => + Code_Printer.literal_list literals (map (pr vars Code_Printer.NOBR) ts) + | NONE => + default_list (Code_Printer.infix_cons literals) (pr vars) fxy t1 t2; + in Code_Target.add_const_syntax target @{const_name Cons} + (SOME (Code_Printer.complex_const_syntax (2, ([@{const_name Nil}, @{const_name Cons}], pretty)))) + end + +end; +*} code_type list (SML "_ list") diff -r 2e1b47e22fc6 -r ee729dbd1b7f src/HOL/Nat_Transfer.thy --- a/src/HOL/Nat_Transfer.thy Fri Dec 07 14:30:00 2012 +0100 +++ b/src/HOL/Nat_Transfer.thy Fri Dec 07 16:25:33 2012 +0100 @@ -420,4 +420,8 @@ return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2 cong: setsum_cong setprod_cong] + +(*belongs to Divides.thy, but slows down dependency discovery*) +ML_file "~~/src/Provers/Arith/cancel_div_mod.ML" + end diff -r 2e1b47e22fc6 -r ee729dbd1b7f src/HOL/Tools/list_code.ML --- a/src/HOL/Tools/list_code.ML Fri Dec 07 14:30:00 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,53 +0,0 @@ -(* Title: HOL/Tools/list_code.ML - Author: Florian Haftmann, TU Muenchen - -Code generation for list literals. -*) - -signature LIST_CODE = -sig - val implode_list: string -> string -> Code_Thingol.iterm -> Code_Thingol.iterm list option - val default_list: int * string - -> (Code_Printer.fixity -> Code_Thingol.iterm -> Pretty.T) - -> Code_Printer.fixity -> Code_Thingol.iterm -> Code_Thingol.iterm -> Pretty.T - val add_literal_list: string -> theory -> theory -end; - -structure List_Code : LIST_CODE = -struct - -open Basic_Code_Thingol; - -fun implode_list nil' cons' t = - let - fun dest_cons (IConst { name = c, ... } `$ t1 `$ t2) = - if c = cons' - then SOME (t1, t2) - else NONE - | dest_cons _ = NONE; - val (ts, t') = Code_Thingol.unfoldr dest_cons t; - in case t' - of IConst { name = c, ... } => if c = nil' then SOME ts else NONE - | _ => NONE - end; - -fun default_list (target_fxy, target_cons) pr fxy t1 t2 = - Code_Printer.brackify_infix (target_fxy, Code_Printer.R) fxy ( - pr (Code_Printer.INFX (target_fxy, Code_Printer.X)) t1, - Code_Printer.str target_cons, - pr (Code_Printer.INFX (target_fxy, Code_Printer.R)) t2 - ); - -fun add_literal_list target = - let - fun pretty literals [nil', cons'] pr thm vars fxy [(t1, _), (t2, _)] = - case Option.map (cons t1) (implode_list nil' cons' t2) - of SOME ts => - Code_Printer.literal_list literals (map (pr vars Code_Printer.NOBR) ts) - | NONE => - default_list (Code_Printer.infix_cons literals) (pr vars) fxy t1 t2; - in Code_Target.add_const_syntax target @{const_name Cons} - (SOME (Code_Printer.complex_const_syntax (2, ([@{const_name Nil}, @{const_name Cons}], pretty)))) - end - -end; diff -r 2e1b47e22fc6 -r ee729dbd1b7f src/HOL/Tools/list_to_set_comprehension.ML --- a/src/HOL/Tools/list_to_set_comprehension.ML Fri Dec 07 14:30:00 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,224 +0,0 @@ -(* Title: HOL/Tools/list_to_set_comprehension.ML - Author: Lukas Bulwahn, TU Muenchen - -Simproc for rewriting list comprehensions applied to List.set to set -comprehension. -*) - -signature LIST_TO_SET_COMPREHENSION = -sig - val simproc : simpset -> cterm -> thm option -end - -structure List_to_Set_Comprehension : LIST_TO_SET_COMPREHENSION = -struct - -(* conversion *) - -fun all_exists_conv cv ctxt ct = - (case Thm.term_of ct of - Const (@{const_name HOL.Ex}, _) $ Abs _ => - Conv.arg_conv (Conv.abs_conv (all_exists_conv cv o #2) ctxt) ct - | _ => cv ctxt ct) - -fun all_but_last_exists_conv cv ctxt ct = - (case Thm.term_of ct of - Const (@{const_name HOL.Ex}, _) $ Abs (_, _, Const (@{const_name HOL.Ex}, _) $ _) => - Conv.arg_conv (Conv.abs_conv (all_but_last_exists_conv cv o #2) ctxt) ct - | _ => cv ctxt ct) - -fun Collect_conv cv ctxt ct = - (case Thm.term_of ct of - Const (@{const_name Set.Collect}, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv cv ctxt) ct - | _ => raise CTERM ("Collect_conv", [ct])) - -fun Trueprop_conv cv ct = - (case Thm.term_of ct of - Const (@{const_name Trueprop}, _) $ _ => Conv.arg_conv cv ct - | _ => raise CTERM ("Trueprop_conv", [ct])) - -fun eq_conv cv1 cv2 ct = - (case Thm.term_of ct of - Const (@{const_name HOL.eq}, _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv1) cv2 ct - | _ => raise CTERM ("eq_conv", [ct])) - -fun conj_conv cv1 cv2 ct = - (case Thm.term_of ct of - Const (@{const_name HOL.conj}, _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv1) cv2 ct - | _ => raise CTERM ("conj_conv", [ct])) - -fun rewr_conv' th = Conv.rewr_conv (mk_meta_eq th) - -fun conjunct_assoc_conv ct = - Conv.try_conv - (rewr_conv' @{thm conj_assoc} then_conv conj_conv Conv.all_conv conjunct_assoc_conv) ct - -fun right_hand_set_comprehension_conv conv ctxt = - Trueprop_conv (eq_conv Conv.all_conv - (Collect_conv (all_exists_conv conv o #2) ctxt)) - - -(* term abstraction of list comprehension patterns *) - -datatype termlets = If | Case of (typ * int) - -fun simproc ss redex = - let - val ctxt = Simplifier.the_context ss - val thy = Proof_Context.theory_of ctxt - val set_Nil_I = @{thm trans} OF [@{thm set.simps(1)}, @{thm empty_def}] - val set_singleton = @{lemma "set [a] = {x. x = a}" by simp} - val inst_Collect_mem_eq = @{lemma "set A = {x. x : set A}" by simp} - val del_refl_eq = @{lemma "(t = t & P) == P" by simp} - fun mk_set T = Const (@{const_name List.set}, HOLogic.listT T --> HOLogic.mk_setT T) - fun dest_set (Const (@{const_name List.set}, _) $ xs) = xs - fun dest_singleton_list (Const (@{const_name List.Cons}, _) - $ t $ (Const (@{const_name List.Nil}, _))) = t - | dest_singleton_list t = raise TERM ("dest_singleton_list", [t]) - (* We check that one case returns a singleton list and all other cases - return [], and return the index of the one singleton list case *) - fun possible_index_of_singleton_case cases = - let - fun check (i, case_t) s = - (case strip_abs_body case_t of - (Const (@{const_name List.Nil}, _)) => s - | _ => (case s of NONE => SOME i | SOME _ => NONE)) - in - fold_index check cases NONE - end - (* returns (case_expr type index chosen_case) option *) - fun dest_case case_term = - let - val (case_const, args) = strip_comb case_term - in - (case try dest_Const case_const of - SOME (c, T) => - (case Datatype.info_of_case thy c of - SOME _ => - (case possible_index_of_singleton_case (fst (split_last args)) of - SOME i => - let - val (Ts, _) = strip_type T - val T' = List.last Ts - in SOME (List.last args, T', i, nth args i) end - | NONE => NONE) - | NONE => NONE) - | NONE => NONE) - end - (* returns condition continuing term option *) - fun dest_if (Const (@{const_name If}, _) $ cond $ then_t $ Const (@{const_name Nil}, _)) = - SOME (cond, then_t) - | dest_if _ = NONE - fun tac _ [] = rtac set_singleton 1 ORELSE rtac inst_Collect_mem_eq 1 - | tac ctxt (If :: cont) = - Splitter.split_tac [@{thm split_if}] 1 - THEN rtac @{thm conjI} 1 - THEN rtac @{thm impI} 1 - THEN Subgoal.FOCUS (fn {prems, context, ...} => - CONVERSION (right_hand_set_comprehension_conv (K - (conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_TrueI})) Conv.all_conv - then_conv - rewr_conv' @{lemma "(True & P) = P" by simp})) context) 1) ctxt 1 - THEN tac ctxt cont - THEN rtac @{thm impI} 1 - THEN Subgoal.FOCUS (fn {prems, context, ...} => - CONVERSION (right_hand_set_comprehension_conv (K - (conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_FalseI})) Conv.all_conv - then_conv rewr_conv' @{lemma "(False & P) = False" by simp})) context) 1) ctxt 1 - THEN rtac set_Nil_I 1 - | tac ctxt (Case (T, i) :: cont) = - let - val info = Datatype.the_info thy (fst (dest_Type T)) - in - (* do case distinction *) - Splitter.split_tac [#split info] 1 - THEN EVERY (map_index (fn (i', _) => - (if i' < length (#case_rewrites info) - 1 then rtac @{thm conjI} 1 else all_tac) - THEN REPEAT_DETERM (rtac @{thm allI} 1) - THEN rtac @{thm impI} 1 - THEN (if i' = i then - (* continue recursively *) - Subgoal.FOCUS (fn {prems, context, ...} => - CONVERSION (Thm.eta_conversion then_conv right_hand_set_comprehension_conv (K - ((conj_conv - (eq_conv Conv.all_conv (rewr_conv' (List.last prems)) then_conv - (Conv.try_conv (Conv.rewrs_conv (map mk_meta_eq (#inject info))))) - Conv.all_conv) - then_conv (Conv.try_conv (Conv.rewr_conv del_refl_eq)) - then_conv conjunct_assoc_conv)) context - then_conv (Trueprop_conv (eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt) => - Conv.repeat_conv - (all_but_last_exists_conv - (K (rewr_conv' - @{lemma "(EX x. x = t & P x) = P t" by simp})) ctxt)) context)))) 1) ctxt 1 - THEN tac ctxt cont - else - Subgoal.FOCUS (fn {prems, context, ...} => - CONVERSION - (right_hand_set_comprehension_conv (K - (conj_conv - ((eq_conv Conv.all_conv - (rewr_conv' (List.last prems))) then_conv - (Conv.rewrs_conv (map (fn th => th RS @{thm Eq_FalseI}) (#distinct info)))) - Conv.all_conv then_conv - (rewr_conv' @{lemma "(False & P) = False" by simp}))) context then_conv - Trueprop_conv - (eq_conv Conv.all_conv - (Collect_conv (fn (_, ctxt) => - Conv.repeat_conv - (Conv.bottom_conv - (K (rewr_conv' - @{lemma "(EX x. P) = P" by simp})) ctxt)) context))) 1) ctxt 1 - THEN rtac set_Nil_I 1)) (#case_rewrites info)) - end - fun make_inner_eqs bound_vs Tis eqs t = - (case dest_case t of - SOME (x, T, i, cont) => - let - val (vs, body) = strip_abs (Pattern.eta_long (map snd bound_vs) cont) - val x' = incr_boundvars (length vs) x - val eqs' = map (incr_boundvars (length vs)) eqs - val (constr_name, _) = nth (the (Datatype.get_constrs thy (fst (dest_Type T)))) i - val constr_t = - list_comb - (Const (constr_name, map snd vs ---> T), map Bound (((length vs) - 1) downto 0)) - val constr_eq = Const (@{const_name HOL.eq}, T --> T --> @{typ bool}) $ constr_t $ x' - in - make_inner_eqs (rev vs @ bound_vs) (Case (T, i) :: Tis) (constr_eq :: eqs') body - end - | NONE => - (case dest_if t of - SOME (condition, cont) => make_inner_eqs bound_vs (If :: Tis) (condition :: eqs) cont - | NONE => - if eqs = [] then NONE (* no rewriting, nothing to be done *) - else - let - val Type (@{type_name List.list}, [rT]) = fastype_of1 (map snd bound_vs, t) - val pat_eq = - (case try dest_singleton_list t of - SOME t' => - Const (@{const_name HOL.eq}, rT --> rT --> @{typ bool}) $ - Bound (length bound_vs) $ t' - | NONE => - Const (@{const_name Set.member}, rT --> HOLogic.mk_setT rT --> @{typ bool}) $ - Bound (length bound_vs) $ (mk_set rT $ t)) - val reverse_bounds = curry subst_bounds - ((map Bound ((length bound_vs - 1) downto 0)) @ [Bound (length bound_vs)]) - val eqs' = map reverse_bounds eqs - val pat_eq' = reverse_bounds pat_eq - val inner_t = - fold (fn (_, T) => fn t => HOLogic.exists_const T $ absdummy T t) - (rev bound_vs) (fold (curry HOLogic.mk_conj) eqs' pat_eq') - val lhs = term_of redex - val rhs = HOLogic.mk_Collect ("x", rT, inner_t) - val rewrite_rule_t = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) - in - SOME - ((Goal.prove ctxt [] [] rewrite_rule_t - (fn {context, ...} => tac context (rev Tis))) RS @{thm eq_reflection}) - end)) - in - make_inner_eqs [] [] [] (dest_set (term_of redex)) - end - -end